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Abstract— In this work, development of 
thyristors-based direct-on-line starter for 3-phase 
electric motor is presented. Specifically, the 
Thyristor-based Direct On-Line (DOL) Starter is 
meant to control and thereby reduce or eliminate 
the motor startup problems identified in existing 
conventional Direct On-Line Starter and also 
provide an optimal solution to induction motor 
starters. The two major challenges identified in 
existing conventional Direct On-Line Starter are 
voltage sag and large inrush currents. The 
methodology included the system model 
development, the development of the model for 
the control strategy in the Thyristor-based Direct 
On-Line (DOL) Starter. The system is also 
modeled and simulated in MATLAB. The Thyristor-
based solution is designed to be applicable to 
systems with various voltages levels ranging from 
𝟑𝟖𝟎𝑽 up to 𝟏𝟎𝒌𝑽.The simulation results showed 
that when the three phase electric motor is 
operated using the conventional method, there is 
a large inrush starting current of up to 𝟑𝟕𝟎𝟎𝑨 at 
the initial stage which goes gradually to steady 
state in about 𝟏𝟎 𝒔𝒆𝒄𝒐𝒏𝒅𝒔 . However, when the 
proposed solution is applied, the current 
waveform does not just have a quick settling time 
(at about 0.3 seconds), but the settling amplitude 
is about 𝟏𝟓𝟎𝑨 which is about 70% improvement. 
Also, with the existing conventional starter 
method the line current oscillates initially around 

𝟖𝟎𝟎𝑨, then settles at steady state around 𝟏𝟖𝟎𝑨 

in 𝟎. 𝟐 𝒔𝒆𝒄𝒐𝒏𝒅𝒔 . However, with the proposed 
Thyristor-based method, the current tends to 
begin from zero and then rise to attend a steady 
state of about 𝟐𝟐𝟎𝑨 in 𝟎. 𝟎𝟖 seconds. The current 
starts from zero in the conventional case 
following the running speed of the rotor. On the 
other hand, the proposed method does not 
engage motor system until the current rises to a 
sufficient magnitude. This makes it safe for loads 
connected to the system. In addition, the results 
for the system line currents, electromagnetic 
torque and rotor speed at normal operation (or 
steady state) show that the proposed system 
behaviours do not differ from the existing or 
convention system at steady state. Notably, the 
Thyristor-based method  presented in this work is 
only relevant when the three phase electric motor 
is about to start.  This is the time it draws 
enormous current, and the aim of this study is to 
minimize the huge current (using the soft start 
technique). As such, once the three phase electric 
motor is started and runs on normal operating 
speed, everything becomes normal as is 
obtainable in the phase electric motor with the 
conventional starter method. 

Keywords— Direct-On-Line Starter, Thyristors, 
Electronic Starter, 3-Phase Electric Motor, Rotor 
Resistance Starter, Stator Resistance Starter 
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1.0  INTRODUCTION 

In many industries today, three phase 
electric motor are prime movers of major 
processes [1]. Importantly, three phase electric 
motor mainly works based on the principles of 
rotating magnetic field [2,3]. More often, the 
motor windings get damaged due to large amount 
of inrush current during startup of the motor 
[4,5]. Consequently, there is a significant amount 
of voltage drop in the line, thus subjecting other 
components which share the same line to voltage 
spikes. One of the effective ways to eliminate or 
reduce such unwanted effect is to limit the current 
drawn by the three phase electric motor at the 
starting period. The mechanism used to minimize 
the initial inrush current at startup is known as the 
starter, which typically reduces the supply voltage 
to the three-phase motor. It is expected that the 
reduced voltage is sustained until motor reaches 
the rated speed before the rated voltage is applied 
[6,7]. Various studies have revealed that Star-
Delta Starters, Autotransformer Starter, Direct 
Online Starter (DOL), Electronic Starter, Rotor 
Resistance Starter, and Stator Resistance Starter, 
are commonly used starters. However, this work 
considers the SCR DOL based controller [8,9,10]. 

Specifically, this work proposes a DOL 
starter circuit based on SCR technology to 
address the issues identified from the existing 
methods [11,12]. Based on the reviewed 
literatures, the major work gaps discovered 
include over-voltage, over-current, voltage sags, 
jerking, mechanical wearing and electrical 
wearing. Consequently, emphasis is laid on these 

parameters as they form the key metrics of the 
design. 

2. METHODOLOGY 

The central focus of this research is on the design 
of electric circuitry for Thyristor-based Direct 
On-Line (DOL) Starter for three phase electric 
motor.  It is the process of integrating 
electromechanical components such as Isolator 
Gear Switch Fuses (IGSF), Model Case Circuit 
Breaker (MCCB), Thermal Overload Relay 
(TOR) and electronic components such as 
Capacitor, Inductor, Rectifier and Thyristor 
known as Silicon Controlled Rectifier(SCR) to 
actualized the  thyristo-based Direct On-Line 
Starter for three phase induction motor [13].  The 
proposed Thyristor-based Direct On-Line (DOL) 
Starter is meant to control and thereby reduce or 
eliminate the motor startup problems identified in 
existing conventional Direct On-Line Starter and 
also provide an optimal solution to induction 
motor starters. The methodology included the 
system model development, the development of 
the model for the control strategy in the 
Thyristor-based Direct On-Line (DOL) Starter. 
Eventually, the model simulation and 
performance evaluation are presented followed by 
results and discussions. 

2.1 The System Model 

Silicon Controlled Rectifier (SCR) is one of the 
major component of an electronic starter which is 
also considered as soft starter [14,15]. In this 
design, the SCR voltage controllers are used of 
which the block diagram is presented in Figure 1. 
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𝑇 ⋅ ⋅ 𝐼

   (11) 

Equation 11 expresses the electromagnetic torque 
as a function of stator current. Consequently, 
Equation 9 and Equation 11 can be used to 
control the speed of the motor by adjusting 𝑉  
and 𝐼 . In this work, the two parameters 
adjustment is achieved by applying the voltage 
divider rule, injecting virtual impedance into the 
power line. 

2.2 The Model for the Control Strategy 

The series compensator (SC) is designed to be 
engaged during turbulence (mostly at startup) in 
DVR mode. This implies that the bypass switch 
disengages the proposed scheme when the system 
is operating at normal condition. If the proposed 
scheme is engaged due to voltage distortion in the 
system, the SC model injects sufficient magnitude 
of voltage in phase and in series with the line, 
while the storage capacitor compensates for 
voltage sags. The voltage injected by the scheme 
can be derived as: 

𝑉 , , 𝑉 , , 𝑉 , ,

𝛼𝑉 𝑉   (12) 

Where, 𝑉  denotes the DC link voltage, 𝛼 
denotes the modulation index of the proposed 
model, and 𝑉  denotes filter voltage. 

When the motor starts up, slip is approximately 
one (𝑠 ≅ 1 . From Equation 6 and Equation 11, 
the starting current can be derived as: 

𝑖
  (13) 

From Equation 3.13, the electromagnetic starting 
torque can be computed as: 

𝑇 _

⋅ ⋅ 𝐼   (14) 

The starting current is proportional to the terminal 
voltage per phase while the electromagnetic 
torque is proportional to the square of the starting 
current according to Equation 13 and Equation 
14, respectively. Consequently, torque is 
proportional to the square of terminal voltage per 
phase. 

In order to limit the rotational speed and large 
inrush current during startup, virtual impedance is 
introduced as illustrated in Figure 4. The 
introduction of virtual impedance to the system 
makes the output impedance a competent variable 
to regulate terminal voltage per phase and the 
starting current. Considering the virtual 
impedance, the starting current can be rewritten 
as: 

𝑖

    

(15) 

Equation 15 has it evidently that starting current 
can be seamlessly controlled by varying the 
virtual impedance. 

The configuration of the proposed series 
compensator scheme gives the flexibility for the 
system to operate in either of the two different 
modes (virtual impedance mode or voltage 
compensation mode) based on the state of the 
three phase electric motor. At normal condition, 
the virtual resistor in Figure 4 is deactivated, thus 
causing the line current to be within nominal 
range. In this case, the proposed serial 
compensator scheme operates in DVR mode 
(similar running condition with the conventional 
methods). Conversely, if there is voltage 
distortion (mostly at startup), the virtual 
impedance control is activated. The control 
system design is presented in Figure 5.     
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           (23) 

𝑉 𝑉 𝑉  is the source voltage while 
𝑉 is the compensation voltage which is 
orthogonally injected to the load current 𝑖 . 
The system impedance expressed in Equation 23 
is achieved by adjusting the virtual impedance, 
thus, the voltage injected can be expressed as: 

𝑉 𝑍 ⋅ 𝑖  (24) 

After starting the three phase electric motor, the 
speed of the rotor gradually increases which 
results in decrease in slip ratio. According to 
Equation 15, the virtual impedance 𝑍  can be 
dynamically modified during startup to limit the 
starting current. 

Consider a series connection between the virtual 
impedance and the distribution line, and then the 
terminal voltage can be represented as: 

𝑉 1 ⋅ ⋅ 𝑉 𝜌 ⋅ 𝑉

   (25) 

Where 𝜌 represents the ration between 𝑉  and 
𝑉 . The direct starting current is greater than the 
soft starter current by 𝜌. Also the direct starting 
torque is greater than the soft starter torque by 
square of 𝜌 . 𝑖  and 𝑇  are checked for 
different values of 𝜌. For instance, 𝜌 1/16, and 
the effect of 𝑍  is neglected. 

𝜌 𝑅 𝑋 𝑖 𝑋 𝑖  𝑋 𝑖

𝑅 𝑋 𝑖 𝑋 𝑖     (26) 

and the initial value of the virtual impedance can 
be expressed as: 

𝑍

1 𝜌 ⋅ 𝑅 𝑋 𝑖 𝑋 𝑖

 𝑋 𝑖 𝑋 𝑖       (27) 

By considering the initial value of the virtual 
impedance, the dynamic adjustment process can 
be derived as: 

𝑍 𝑍 ∑ 𝑘 ⋅
𝐽

_
  (28) 

Where, 𝐽  denotes virtual impedance correction 
factor, 𝑇 denotes the virtual impedance operating 
period, and 𝑘  is governed by the constraint in 
Equation 29 

𝑘
1,   ∆𝐼 0
0,   ∆𝐼 0 

 (29) 

Where ∆ 𝐼 𝐼 𝐼 . This can limit the 
starting current to a substantial value. 

2.3 Model Simulation and Evaluation 

In order to validate the proposed system, the 
model simulation is conducted using matrix 
laboratory (MATLAB). First, the SCR switching 
circuit was modeled in SIMULINK as presented 
in Figure 6. The virtual impedance controller 
SIMULINK model is presented in Figure 7.  
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