Simulated Performance Analysis Of Standalone Photovoltaic Power System With Backup Generator For A Hospital In Akwa Ibom State

Ekpa, Andikan Kenneth¹ Department of Electrical/ Electronic Engineering Akwa Ibom State Polytechnic Ikot Osurua , Ikot Ekepene

> Baruch Dominic Ekanem² Foundation polytechnic Ikot Idem Ikot Ekpene, Akwa ibom State, Nigeria

Silas Abraham Friday³ Department of Electrical/ Electronic Engineering Adekeke University, Ede Osun State silas.abraham@adelekeuniversity.edu.ng

Abstract- In this paper, the simulated performance analysis of standalone photovoltaic power system with backup generator for a hospital in Akwa Ibom State is presented. The installation site geo-coordinates are 4.926045 (latitude) and 8.030304 (longitude) and the hospital has daily energy demand of 101.808 kWh.day. The system design specification has 2 days of power autonomy and maximum of 5% loss of load probability and DC line voltage of 24 V. A battery bank consisting of a total of 126 batteries each with 12 V and 150 Ah capacity is required. Also, PV array consisting of a total of 211PV modules each with 24V and 190 Wp power required.The PVSyst software capacity is simulation of the PV power system was conducted and the main simulation results show that the system has annual energy yield of 47.8 MWh/year, specific energy yield of 1193 kWhkWhp/year. solar fraction of 95.4 %, missing energy of 1736 kWh, loss of load of 4.7 % and unused energy of 7327 kWh/year. The PV system has yearly total of daily reference energy yield (Yr) of 1576 kWh/m^2.day, the normalized loss due to unused energy has annual mean of 0.257, the normalized loss (Lc) in the PV array has annual mean of 1.551, the normalized system loss (Ls) has annual mean of 0.333 while the system performance ratio (PR) is 0.564 or 56.4 %. The system loss diagram shows that battery loss is about 4.1 % of the total energy yield, energy loss due to unused energy is about 12 % of the total energy yield, while the highest loss of 19 % is the array loss which is the sum of thermal loss, loss due to PV module quality, dust and other factors associated with the PV module. Essentially, the PV system supplied 95.4 % (that is the solar fraction) of the required energy for the hospital while about 4.7 % (that is the loss of load) of the required energy are not met with the PV power system. However, the system performance

is acceptable since the design specification allowed a maximum of 5 % loss of load with two days power autonomy. Also, with the backup generator in place, the missing 4.7% energy demand will be supplied from the backup generator.

Keywords— Performance Analysis, Standalone Photovoltaic Power System, Loss Of Load, Hospital PV Power, Backup Generator

1. INTRODUCTION

Increasingly, for effective service delivery, many health facilities in the remote parts of Nigeria are adopting solar power options [1,2,3]. This help them to stay connected in terms of internet connectivity as well as connected via the various wireless network services that are available in various parts of Nigeria. Notably, patients and their relatives are always eager to have some level of electric power availability in the health facilities to help them remotely connect and coordinate the health care service delivery and to respond promptly to emergency situation.

In any case, some of the health facilities in the remote areas have electric generators based on fossil fuel. However, with the present high cost of fossil fuel, majority of the health facilities are installing solar photovoltaic (PV) power as the main alternative power source with the fossil fuel electric power generators as the second option [4,5,6]. Consequently, in this paper, the simulated performance analysis of standalone photovoltaic power system with backup generator for a hospital is presented [7,8,9]. The study presented the sizing of the solar power system, as well as the normalized performance parameters [10, 11] and losses using the loss diagram in PVSyst software [12,13]. The analysis is done using PVSyst simulation software [14,15].

2. METHODOLOGY

The study considered a the Photovoltaic (PV) power supply for a hospital located at for Ituk Mbang, Akwa Ibom State with daily energy demand of 101.808 kWh.day, as shown in Table 1. The cut section of the Google map screenshot for the case study hospital at Ituk Mbang with geocoordinate of 4.926045 (latitude) and 8.030304 (longitude) is shown in Figure 1. The time evolution plot of the daily solar irradiation on the plane of the PV module as captured from NASA portal using PVSyst software is shown in Figure 2. The PVSyst screenshot for the optimal tilt angle of the PV module for the case study site is shown in Figure 3. It shows that the 9° is optimal PV module tilt angle for the case study site and it yields transposition factor of 1.01 % on the titled plane of the PV module. Also, Figure 4 shows the PVSyst screenshot for the standalone photovoltaic power system with backup generator. The PV system key components sizing configuration in PVSyst software is shown in Figure 6.

Based on the system design specification settings on Figure 6, the system design specification has 2 days of power autonomy and maximum of 5% loss of load probability and DC line voltage of 24 V. A battery bank consisting of a total of 126 batteries each with 12 V and 150 Ah capacity is required. Also, PV array consisting of a total of 211PV modules each with 24V and 190 Wp power capacity is required.

Table 1 The daily energy demand profile for the case study a hospital located at for Ituk Mbang, Akwa Ibom Stat
Source [16]

S/N	Appliance Description	Qty.	Rated Power (Watts)	Number of Hours Operated	Total Power (Watts)	Total Wh per day	Total Kwh per day		
1	Blood bank Fridge	2	50	24	100	2400	2.4		
	Vaccine Fridge	2	80	12	160	1920	1.92		
2	Microscope	2	15	6	30	180	0.18		
3	Operating Lamp	1	125	4	125	500	0.5		
4	Syringe Pumps	2	600	1	1200	1200	1.2		
5	Air conditioners	2	746	6	1492	8952	8.952		
6	Lighting	56	100	12	5500	67200	67.2		
7	Hematology Mixer	1	28	4	28	112	0.112		
8	Incubators	2	400	7	800	5600	5.6		
9	Curing light	1	90	3	90	270	0.27		
10	Microwave	1	700	3	700 2100		2.1		
11	Medical Centrifuge	1	578	3	578 1734		1.734		
12	Washing Machine	1	450	2	450	900	0.9		
13	PC and Printer	2	120	6	240	1440	1.44		
14	TV	2	50	10	100	1000	1		
15	Drier	1	500	3	500	1500	1.5		
16	Ceiling Fan	6	100	8	600	4800	4.8		
	Total 12793						101.808		
	Average number of hours per day (hours)								

Figure 1 The cut section of the Google map screenshot for the case study hospital at Ituk Mbang with geocoordinate of 4.926045 (latitude) and 8.030304 (longitude)

Figure 2 The time evolution plot of the daily solar irradiation on the plane of the PV module as captured from NASA portal using PVSyst software

Figure 3 The PVSyst screenshot for the optimal tilt angle of the PV module for the case study site

Figure 4 The PVSyst screenshot for the standalone photovoltaic power system with backup generator.

🕺 Stand-alone System defir	nition, Variant "New simul	lation variant"	_	· □ ×
Presizing help				
Av. daily needs : Enter acc	epted LOL 5	* ?	Battery (user) voltage	24 ÷ V ?
102 kWh/day Enter requ	uested autonomy 2 🚽 d	day(s) 🙎	Suggested capacity Suggested PV power	9444 Ah 41.0 kWp (nom.)
Select battery set				
Sort Batteries by 📀 voltage	——— C capacity ——	C manufacture	f	
12 V 150 Ah D	ural SC	Electrona		🔹 <u> </u> Open
2 I Batteries in serie 63 I Batteries in paralle	Number	r of batteries 126	Battery pack voltage Global capacity Stored energy	24∨ 9450Ah 227kWh
Select module(s)				
Sort modules by: 📀 power -	— C technology —	C manufacture	er All modules	-
190 Wp 24V Si-poly	aleo 200-6-XS	Aleo Solar	Photon Mag. 200	💽 🚹 🔁 🖸 pen
Modules in serie			Array voltage at 50°C	25.7∨
211 - Modules in paralle	I montanti		Array current	1384 A
211 Modules			Array nom. power (STC) 40.1 kWp
≪ī ∎ <u>U</u> ser's needs	🗶 Cancel		IK	<u>N</u> ext ⊈>

Figure 5 The PV system key components sizing configuration in PVSyst software

3. RESULTS AND DISCUSSION

Based on the system component sizing captured in Figure 5, the PVSyst software simulation of the PV power system was conducted and the main simulation parameters captured with the PVSyst software are presented in Figure 6. The screenshot of the PVSyst main results output page is shown in Figure 7. It shows that the system annual energy yield of 47.8 MWh/year, specific energy yield of 1193 kWhkWhp/year, solar fraction of 95.4 %, missing energy of 1736 kWh, loss of load of 4.7 % and unused energy of 7327 kWh/year. Essentially, the PV system supplied 95.4 % (that is the solar fraction) of the required energy for the hospital while about 4.7 % (that is the loss of load) of the required energy are not met with the PV power system. However, the system performance is acceptable since the design specification allowed a maximum of 5 % loss of load with two days power autonomy. Also, with the backup generator in place, the missing 4.7% energy demand will be supplied from the backup generator.

The normalized key performance parameters of the PV system are presented in Table 2. The results show that the yearly total of the daily reference energy yield (Yr) is 1576 kWh/m^2.day, the normalized loss due to unused energy has annual mean of 0.257, the normalized loss (Lc) in the PV array has annual mean of 1.551, the normalized system loss (Ls) has annual mean of 0.333 while the system performance ratio (PR) is 0.564 or 56.4 %.

The system loss diagram is presented in Figure 8. It shows that battery loss is about 4.1 % of the total energy yield, energy loss due to unused energy is about 12 % of the total energy yield, while the highest loss of 19 % is the array loss which is the sum of thermal loss, loss due to PV module quality, dust and other factors associated with the PV module

PVSYST V5.20				Page 1/4
St	tand Alone System:	Simulation pa	arameters	
Project :	tuk Mhang Health Center			
Mater data :	tuk Mhana Llouan Even M	ACA COE Curth	Haushy Data	
Meteo data :	tuk mbang Uruan Prom N	ASA-SSE, Synth	Hourry Data	
Simulation parameters				
Collector Plane Orientation	Tilt	9°	Azimuth	0"
PV Array Characteristics				
PV module	Si-poly Model	aleo 200-6-X\$ Aleo Solar		
Number of PV modules	Inseries	1 modules	In parallel	211 strings
Total number of PV modules	Nb. modules	211	Unit Nom, Power	190 Wp
Array global power	Nominal (STC)	40 KWp	At operating cond.	36 kWp (50°C)
Array operating characteristics (50	C) U mpp	26 V	Impo	1384 A
Total area	Module area	328 m²		
PV Array loss factors				
Thermal Loss factor => Nominal Oper. Coll. Temp.	Uc (const) (G=800 W/m ² , Tamb=20°C, W	20.0 W/m ² K /ind velocity = 1m/s.)	Uv (wind) NOCT	0.0 W/m ² K / m/s 56 °C
Wiring Ohmic Loss	Global array res.	0.31 m0hm	Loss Fraction	1.5% at STC
Module Quality Loss			Loss Fraction	1.5%
Module Mismatch Losses			Loss Fraction	4.0 % (fixed voltage)
Incidence effect, ASHRAE paramet	rization IAM =	1 - bo (1/cas i - 1)	bo Parameter	0.05
System Parameter	System type	Stand Alone Syste	m	
Battery	Martin	Dural SC		
Cutting	Manufacturer	Electrona		
Battery Pack Characteristics	Voltage	24 V	Nominal Capacity	9450 Ah
	Nb. of units	2 in series x 63 in p	arallel	
	Temperature	Fixed (20°C)		
Regulator	Model	General Purpose D	efault	
	Technology	Undefined	Temp coeff.	-5.0 mV/°C/elem.
Battery Management Thresholds	Charging	27.4/26.2 V	Discharging	23.5/25.2 V
	Back-Up Genset Command	23.6/25.8 V		
User's needs :	Daily household consumers average	Constant over the y 102 kWh/Day	453F	

Figure 6 The main simulation parameter captured with the PVSyst software

PVSYST V5.20				Page 3/4
	Stand Alone Sys	tem: Main re	sults	
Project : Simulation variant :	Ituk Mbang Health Center No shading effects	r		
Main system parameters	System type	Stand alone		
PV Field Orientation	sit	9 °	azimuth	0"
PV Array	Nb. of modules	211	Pnom total	40 KWp
Battery	Model	Dural SC	Technology	vented, tubular
battery Pack	Nb. of units	126	Voltage / Capacity	24 V / 9450 Ah
User's needs	Daily household consumers	Constant over the year global 30		37.4 MWh/year
Main simulation results				
System Production	Available Energy	47.8 MWh/year	Specific prod.	1193 kWh/kWp/year
	Used Energy	35.6 MWh/year	Excess (unused)	7327 kWh/year
	Performance Ratio PR	56.4 %	Solar Fraction SF	95.4 %
Loss of Load	Time Fraction	4.7%	Missing Energy	1736 kWh

Figure 7 The screenshot of the PVSyst main results output page

Table 2 The normalized key performance parameters of the PV system

Simulation variant: New simulation variant

Close Print Export Help

Normalized Performance Coefficients								
	Yr	Lu	Yu	Lc	Ya	Ls	Yf	PR
	kWh/m².day		kWh/kWp/d		kWh/kWp/d		kWh/kWp/d	
January	181.03	0.391	6.70	2.570	0.15	0.717	2.55	0.437
February	165.56	0.420	6.85	2.746	0.15	0.614	2.55	0.432
March	154.81	0.370	5.54	2.022	0.12	0.419	2.55	0.511
April	136.09	0.417	4.81	1.640	0.11	0.344	2.55	0.563
May	128.84	0.263	4.39	1.360	0.10	0.244	2.55	0.614
June	103.62	0.233	3.56	1.038	0.09	0.207	2.21	0.639
July	96.22	0.110	3.15	0.767	0.08	-0.025	2.36	0.761
August	94.48	0.070	3.11	0.750	0.08	0.147	2.15	0.706
September	97.27	0.042	3.29	0.745	0.08	0.158	2.34	0.721
October	113.72	0.231	3.87	1.197	0.09	0.183	2.29	0.624
November	133.66	0.265	4.79	1.551	0.11	0.352	2.55	0.573
December	170.71	0.282	6.30	2.304	0.14	0.650	2.55	0.464
Year	1576.00	0.257	4.69	1.551	0.11	0.333	2.43	0.564

4. CONCLUSION

Figure 8 The system loss diagram

Simulation of solar power system for a health facility is presented. The PVSyst renewable energy system simulation

software is employed for the simulation. The essence of the study is to evaluate the PV system performance for the health facility based on the specified energy demand of the health facility, the meteorological data of the site and the design specifications for the PV system.

The PV system considered in the study is a standalone system with battery bank and backup generator. The result show that about 95.3 % of the energy demand of the hospital is supplied from the PV power system while the missing energy of 4.7% is supplied from the backup generator.

REFERENCE

- 1. Olatomiwa, L., Blanchard, R., Mekhilef, S., & Akinyele, D. (2018). Hybrid renewable energy supply for rural healthcare facilities: An approach to quality healthcare delivery. *Sustainable Energy Technologies and Assessments*, *30*, 121-138.
- 2. Olatomiwa, L., Mekhilef, S., & Ohunakin, O. S. (2016). Hybrid renewable power supply for rural health clinics (RHC) in six geo-political zones of Nigeria. *Sustainable Energy Technologies and Assessments*, *13*, 1-12.
- 3. Olatomiwa, L., & Mekhilef, S. (2015, October). Techno-economic feasibility of hybrid renewable energy system for rural health centre (RHC): The wayward for quality health delivery. In 2015 IEEE Conference on Energy Conversion (CENCON) (pp. 504-509). IEEE.
- 4. Franco, A., Shaker, M., Kalubi, D., & Hostettler, S. (2017). A review of sustainable energy access and technologies for healthcare facilities in the Global South. *Sustainable Energy Technologies and Assessments*, *22*, 92-105.
- 5. Shahsavari, A., & Akbari, M. (2018). Potential of solar energy in developing countries for reducing energy-related emissions. *Renewable and Sustainable Energy Reviews*, *90*, 275-291.
- Salisu, S., Mustafa, M. W., Olatomiwa, L., & Mohammed, O. O. (2019). Assessment of technical and economic feasibility for a hybrid PV-wind-diesel-battery energy system in a remote community of north central Nigeria. *Alexandria Engineering Journal*, 58(4), 1103-1118.
- 7. Ghenai, C., & Bettayeb, M. (2019). Modelling and performance analysis of a stand-alone hybrid solar PV/Fuel Cell/Diesel Generator power system for university building. *Energy*, *171*, 180-189.
- 8. Muceka, R., Kukeera, T., Alokore, Y., Noara, K., & Groh, S. (2018). Integrating a solar pv system with a household based backup generator for hybrid swarm electrification: A case study of nigeria. In *Africa-EU Renewable Energy Research and Innovation Symposium 2018 (RERIS 2018)* (p. 43). Springer, Cham.
- Prudenzi, A., Fioravanti, A., & Caracciolo, V. (2017, September). Resilient power in hospitals: The S. Giovanni addolorata general

hospital case study. In *2017 AEIT International Annual Conference* (pp. 1-6). IEEE.

- Kumar, N. M., Kumar, M. R., Rejoice, P. R., & Mathew, M. (2017). Performance analysis of 100 kWp grid connected Si-poly photovoltaic system using PVsyst simulation tool. *Energy Procedia*, 117, 180-189.
- 11. Yadav, P., Kumar, N., & Chandel, S. S. (2015, April). Simulation and performance analysis of a 1kWp photovoltaic system using PVsyst. In 2015 International Conference on Computation of Power, Energy, Information and Communication (ICCPEIC) (pp. 0358-0363). IEEE.
- 12. Kumar, N. M., Gupta, R. P., Mathew, M., Jayakumar, A., & Singh, N. K. (2019). Performance, energy loss, and degradation prediction of roof-integrated crystalline solar PV system installed in Northern India. *Case Studies in Thermal Engineering*, *13*, 100409.
- 13. IniobongEdifonAbasi-Obot, K. C., & Essang, O. S. (2019). Analysis of the impact of PVSyst thermal loss factor setting on the performance of off-grid photovoltaic power system.
- 14. Irwan, Y. M., Amelia, A. R., Irwanto, M., Leow, W. Z., Gomesh, N., & Safwati, I. (2015). Stand-alone photovoltaic (SAPV) system assessment using PVSYST software. *Energy Procedia*, *79*, 596-603.
- 15. Gurupira, T., & Rix, A. (2017). Pv simulation software comparisons: Pvsyst, nrel sam and pvlib. In *Conf.: saupec*.
- Chikwado, U., Okwuchukwu, O. B., & Chiazor, O. D. (2021) PRIMARY HEALTH CENTRE ROOF-TOP SOLAR ENERGY SYSTEM PERFORMANCE ANALYSIS. Journal of Multidisciplinary Engineering Science and Technology (JMEST) Available at: https://www.jmest.org/wpcontent/uploads/JMESTN42353905.pdf