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Abstract— In this work, injection substation
feeder load modelling using recurrent neural
network with enhanced model parameters
modification technique. The evaluation of loss
function for the RNN model is done using
enhanced model parameters  modification
technique. The detail mathematical expressions
associated with the RNN model, the gradient drop
optimization the enhanced model parameters
modification technique and accommodative
learning rate of the RNN model are presented. A
four months hourly feeder load profile dataset
from a substation in Akwa Ibom State Nigeria is
employed as case study dataset for the RNN
model training and validation. Performance metric
used is root mean square error and a Python
program is developed and used for the simulation.
The loud profile training data stet was segmented
into batches of 24. This means that the model
needs 24 data points to predict the 25 data
point. Essentially, hourly data for one day is used
to predict the beginning data point for the
following day. Consequently, the number of hours
to be predicted into the future was set tol. The
prediction outputs for the case study Secretariat
feeder load profile results shows that the mean
square error value obtained from the model
predictions is 1.21. With is MSE value, it is
evident that the RNN approach is good in the
modelling of the case study Secretariat feeder
load profile. Hence, the RNN model was used to
forecast the case study Secretariat feeder load
profile for one month period.
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1. Introduction

Across the globe, effective and adequate power
supply has been identified as essential for sustainable
development of any nation [1,2,3]. As such, developed
nations are known to have invested heavily in their national
power system which includes such subsystems as power
generation, power transmission and power distribution
system [4,5,6]. Each of these subsystems in the power
industry requires careful planning to achieve effective
service delivery.

Accordingly, the focus in this work is to provide
technological tool that can assist in power distribution
system management by providing machine learning-based
model that can be used to characterize the injection
substation feeder load and also provide load forecasting for
each of the feeder [7,8,9]. This tool is essential as it will
provide the requisite insight into the feeder load variation
pattern and enable accurate estimation of the load demand,
the time series variations in the load demand and the
possible variation of the load profile in the feature. These
information are essential for appropriate sizing of the
distribution system components to avoid over sizing which
can cause equipment damage due to over loading. On the
other hand oversizing of equipment may occur if the
accurate load estimation information is not available. This
again will lead to waste of funds through oversized
transformers and other key distribution system equipment.

Specifically, in this work, Recurrent Neural
Network (RNN) with enhanced model parameters
modification technique is considered for the feeder load
modelling [10,11,12]. Although there has been different
machine learning models, as well as time series models and
other models used in the distribution system load prediction
and forecasting, however, this work is focused on using the
RNN with enhanced model parameters modification
technique which give more accurate load prediction and
forecasting for the case study feeder loads. The RNN model
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and details of the mathematical expressions associated with
the enhanced model parameters modification technique are
presented. Finally, simulation with the case study feeder
dataset is conducted and the results are presented and
discussed.
2. Methodology

In this work, the focus is on substation feeder load
modelling based on recurrent neural network (RNN)
approach. The evaluation of loss function for the RNN
model is done wusing enhanced model parameters
modification  technique. The detail mathematical
expressions associated with the model and the enhanced
model parameters modification technique are presented in
this section.

2.1 Substation feeder load modelling based on
recurrent neural network (RNN) approach

The recurrent neural network (RNN) model
expresses new machine states by making use of certain
transfer function based on the input vectors and previous

states [13,14,15]. This work leverages on the universal
approximation behavior of RNN to approximate the
considered nonlinear system based on certain precision
factors and to obtain some complex routing from input
series to output series. For prediction purpose, the RNN
model learns from time-related data input denoted as x(t)
to yield a corresponding output y(t) being the predicted
value. In some cases, the combination of x(t) and x(t — n)
is made to obtain y(t), where n is a time shift quantity. The
model must be composed such that the loss function is
minimized. The error e(t) in this case is the difference
between the expected output y(t) and the actual output
y(t), and can be represented mathematically as:

e(t) =9(t) —y(t) )
Due to the retentive nature of RNN, they can recreate time
based signatures which resembles those they have learned.
The RNN model is presented in Figure 1.
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Figure 1: The schematic diagram of the recurrent neural network (RNIN) model.

The model is designed such that three nodes are formed
which are the input nodes xj, the virtual node h; and the
output node yy. These nodes are weighted and organized in
recursive pattern. The virtual nodes are designed to have
both input and output links.

In Figure 1, x;, and y; represents input and output
respectively. Each of these variables relates to various
times. W;? denotes the weight matrix for the output, W
denotes the weight matrix for the input, and WY denotes the
virtual weight matrix.

2.2 Gradient Drop Optimization

The loss function characterizes the performance precision
of the neural network; as such the model parameters must
be modified during the neural network training to optimize
the gradient drop. This optimization involves two iterative
processes which include the loss function L, evaluation
when certain input x;, with distributed weight W, is parsed,

. )
and back propagation of the gradient % on the network to
k

modify the model parameters. Mathematically, the loss
function is given as:

Ly = 3 (x, T Wi) + Ry(Wy) - (2)
Where, 3, denotes the function which operates on the
network estimated error, x; denotes the input, and ¥
denotes the predicted output, R; denotes an hyper-
parameter A dependent regularization function. The role of
Ry in the loss function presented in Equation 3 is to
measure the benefaction of the regularization in the
integrated deprivation. In this work, the mean square error,
denoted as MSE is used to compute the error. Considering
the input x, the actual output y,, and the predicted output
Vi, MSE can be computed as:

~ 1 ~
MSE i Jie) = 11 Zoxery, O = Ve)? 3
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Where, y, € yj denotes the result yielded by the recurrent
neural network.
The regularization object Ry injects some bias to enhance
the performance of RNN. The bias minimized excess fitting
on the trained dataset. This work adopts the dropout
regularization approach. This approach ensures that the
neurons are properly engaged during data training using
some probabilistic distribution measures. At the virtual
stage, arbitrarily formulated gauze is located on the neuron
outputs while the hyper parameter computes the probability
of the gauze still at that stage. At the end of data training,
the activation function is shifted by the probabilistic output
such that the target output is sustained.
23 Model Parameters Modification Technique
Other methods fancy the evaluation of loss function on the
whole dataset and modifying the model parameters once,
based on the evaluation results. However, this work applies
such modifications on small chunks of the input. The
modification function is given as:
Wiyr = Wi +nVL (W) (4)
Where, 1 denotes the learning rate which must be optimally
selected to achieve reasonable training on the dataset. A
step decay approach can slow down the learning rate by « if
the learning rate fails to be minimized after some time. The
exponential decay can be computed as:
n=ne " (5
Where, a denotes hyper-parameter and k is the present
optimization time. The distributed weight W, is modified
based on the blend of the gradient VL, (W,,) at the present
instance and earlier modifications V,_; which can be
shifted by hyper-parameter p.
Vie = Wiy — VL (W) (6)
Wicrs = Wi + Vg (7
Equation 6 and Equation 7 ensure that the modification
steadily increment the velocity to achieve a stable gradient.
2.4 Accommodative Learning Rate
The learning method of the model must be selected to
accommodate various conditions. The learning rate is
selected in this work to vary for each model parameter. If
the modified data is provided from past iterations as

VLk(W]-) , where j€(0,1,2,..,k), then a different
modification must be selected for all parameters i contained
inW.

v (W)

®
Wk+1

=W —n @®)

z;?:OVLk(Wj(i))Zﬁ
Where, € denotes a minute positive integer applied to
prevent dividing the numerator by zero. An exponential
dying average of the gradient can prevent the drastic
decrease in learning rate. This can be expressed as:

. —8).,® )2 _
v(‘):[ =0 v+ VL (O) o ) s

‘ 1-6)- v,(ci_)l, otherwise
0 €
Then,
W =w® —q? (10)

Following the modification concept, if there exist some
swings in the gradient modification, then the learning rate
will be damped by (1 — &), but in other cases, it appreciates
by &. Typically, the rate of decay is initialized as 0.01

3. Results and Discussion

3.1 The model simulation

The case study substation is located in Uyo, Akwa Ibom
State Nigeria. The case substation has some other feeders
however, the study is based on the historical load profile of
one specific feeder identified as the Secretariat feeder.
Specifically, hourly feeder load data from the case study
feeder were obtained from May 2022 to August 2022. The
data set has 2802 row count. A python simulation program
was written using Pycharm for the simulation of the model.
The model performance parameter used is Mean Squared
Error (MSE).

Furthermore, one of the objectives of this research is to
transform the given data using the standard scaler in order
to minimize error. A cross-section of the raw dataset for
Secretariat feeder is presented in Figure 2 and a cross
section of the scaled dataset for Secretariat feeder is
presented in Figure 3.
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Figure 2: A section of the un-scaled (raw0 Secretariat feeder dataset
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Figure 3: Raw data visualization for the Secretariat feeder historical load profile

3.2 The recurrent neural network model load prediction
results
In the model development phase, the dataset was
partitioned into 70% to 30% for training and testing
respectively. For the training set, the dataset were
segmented into batches of 24. This means that the model
needs 24 data points to predict the 25" data point. In other
words, hourly data for one day is used to predict the
beginning data point for the following day. Consequently,
the number of hours to be predicted into the future was set
tol. The prediction outputs for the Secretariat feeder load
profile are presented in Figure 4. It should be noted that the

load predictions are done on the scaled data to enhance
accuracy. The training of the dataset was done for 50
epochs and Figure 5 shows both training and validation loss
for the Secretariat feeder load data training after 50 epochs.
The graphical visualization of the raw load profile dataset
for the Secretariat feeder is presented in Figure 6. The
graphical visualization of the 70% training dataset, 30%
test dataset as well as the load forecast for the next 30 days
for the Secretariat feeder are presented in Figure 7. In all,
the results shows that the MSE obtained from the model
predictions is 1.21.
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TrainX TrainY
0 [[-0.7015321584970157, 1.3063430373453015), [-... [-0.9176453156831321]
1 [[-0.7015321584970157, 1.3063430373453015], [-... [-0.9176453156831321]
[[-0.7015321584970157, 1.3063430373453015], [-... [-0.9176453156831321]

[[-0.6583095270597924, 1.3063430373453015], [-... [-0.9176453156831321]

B W™~

[[-0.6583095270597924, 1.3063430373453015], [-... [-0.9176453156831321]

2779 [[0.3172870110946758, -0.40628810665918375], [...  [0.3172870110946758]
2780 [[0.44078024377245656, -0.40628810665918375), ... [0.3172870110946758]
2781 [[0.44078024377245656, -0.40628810665918375), ... [0.3172870110946758]
2782 [[0.44078024377245656, -0.40628810665918375], ... [-0.1766859196164474]
2783 [[0.44078024377245656, -0.40628810665918375], ... [-0.1766859196164474]

2784 rows x 2 columns

Figure 4: Prediction output for Secretariat dataset
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Figure 5: Training loss versus validation loss for the Secretariat data after 50 epochs
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Figure 6: Graphical visualization of the raw load profile dataset for the Secretariat feeder
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Figure 7: Graphical visualization of the of the 70% training dataset, 30% test dataset as well as the forecast for the next 30
days for the Secretariat feeder

4. CONCLUSION
An approach to characterize the feeder load of an injection
substation in Uyo Akwa Ibom State, Nigeria is presented.
The data driven model is based on the recurrent neural
network with enhanced model parameters modification
technique. The key analytical models associated with the
various aspects of the recurrent neural network method are
presented. The case study feeder dataset of a substation

located in Uyo, Akwa Ibom State Nigeria is used for the
model training and validation. The model was eventually
used for the feeder load prediction and also for one moth
forecasting of the feeder load profile. In all, the recurrent
neural network with  enhanced model parameters
modification technique gave small mean square error value
that showed that the model is suitable for characterizing the
case study feeder load profile.
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