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Abstract— In this work, injection substation 

feeder load modelling using recurrent neural 
network with enhanced model parameters 
modification technique. The evaluation of loss 
function for the RNN model is done using 
enhanced model parameters modification 
technique. The detail mathematical expressions 
associated with the RNN model, the gradient drop 
optimization the enhanced model parameters 
modification technique and accommodative 
learning rate of the RNN model are presented. A 
four months hourly feeder load profile dataset 
from a substation in Akwa Ibom State Nigeria is 
employed as case study dataset for the RNN 
model training and validation. Performance metric 
used is root mean square error and a Python 
program is developed and used for the simulation. 
The loud profile training data stet was segmented 
into batches of 𝟐𝟒 . This means that the model 
needs 𝟐𝟒  data points to predict the 𝟐𝟓𝒕𝒉  data 
point. Essentially, hourly data for one day is used 
to predict the beginning data point for the 
following day. Consequently, the number of hours 
to be predicted into the future was set to𝟏. The 
prediction outputs for the case study Secretariat 
feeder load profile results shows that the mean 
square error value obtained from the model 
predictions is 𝟏. 𝟐𝟏 . With is MSE value, it is 
evident that the RNN approach is good in the 
modelling of the case study Secretariat feeder 
load profile. Hence, the RNN model was used to 
forecast the case study Secretariat feeder load 
profile for one month period.  

Keywords— Injection Substation, Machine 
Learning Algorithms, Feeder Load Modelling, 
Power Distribution System,  Recurrent Neural 
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1. Introduction 
 Across the globe, effective and adequate power 
supply has been identified as essential for sustainable 
development of any nation [1,2,3]. As such, developed 
nations are known to have invested heavily in their national 
power system which includes such subsystems as power 
generation, power transmission and power distribution 
system [4,5,6]. Each of these subsystems in the power 
industry requires careful planning to achieve effective 
service delivery. 
 Accordingly, the focus in this work is to provide 
technological tool that can assist in power distribution 
system management by providing machine learning-based 
model that can be used to characterize the injection 
substation feeder load and also provide load forecasting for 
each of the feeder [7,8,9]. This tool is essential as it will 
provide the requisite insight into the feeder load variation 
pattern and enable accurate estimation of the load demand, 
the time series variations in the load demand and the 
possible variation of the load profile in the feature. These 
information are essential for appropriate sizing of the 
distribution system components to avoid over sizing which 
can cause equipment damage due to over loading. On the 
other hand oversizing of equipment may occur if the 
accurate load estimation information is not available. This 
again will lead to waste of funds through oversized 
transformers and other key distribution system equipment.  
 Specifically, in this work, Recurrent Neural 
Network (RNN) with enhanced model parameters 
modification technique is considered for the feeder load 
modelling [10,11,12]. Although there has been different 
machine learning models, as well as time series models and 
other models used in the distribution system load prediction 
and forecasting, however, this work is focused on using the 
RNN with enhanced model parameters modification 
technique which give more accurate load prediction and 
forecasting for the case study feeder loads. The RNN model 
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Where, 𝑦௫ ∈ 𝑦 denotes the result yielded by the recurrent 
neural network. 
The regularization object ℝℏ injects some bias to enhance 
the performance of RNN. The bias minimized excess fitting 
on the trained dataset. This work adopts the dropout 
regularization approach. This approach ensures that the 
neurons are properly engaged during data training using 
some probabilistic distribution measures. At the virtual 
stage, arbitrarily formulated gauze is located on the neuron 
outputs while the hyper parameter computes the probability 
of the gauze still at that stage. At the end of data training, 
the activation function is shifted by the probabilistic output 
such that the target output is sustained. 
2.3   Model Parameters Modification Technique  
Other methods fancy the evaluation of loss function on the 
whole dataset and modifying the model parameters once, 
based on the evaluation results. However, this work applies 
such modifications on small chunks of the input. The 
modification function is given as: 

𝑊ାଵ ൌ 𝑊  𝜂∇𝐿ሺ𝑊ሻ (4) 
Where, 𝜂 denotes the learning rate which must be optimally 
selected to achieve reasonable training on the dataset. A 
step decay approach can slow down the learning rate by 𝛼 if 
the learning rate fails to be minimized after some time. The 
exponential decay can be computed as: 

𝜂 ൌ 𝜂𝑒ିఈ (5) 
Where, 𝛼  denotes hyper-parameter and 𝑘  is the present 
optimization time. The distributed weight 𝑊  is modified 
based on the blend of the gradient ∇𝐿ሺ𝑊ሻ at the present 
instance and earlier modifications 𝑉ିଵ  which can be 
shifted by hyper-parameter 𝜇. 

𝑉 ൌ 𝜇𝑉ିଵ െ 𝜂∇𝐿ሺ𝑊ሻ  (6) 
𝑊ାଵ ൌ 𝑊  𝑉  (7) 

Equation 6  and Equation 7 ensure that the modification 
steadily increment the velocity to achieve a stable gradient. 
2.4 Accommodative Learning Rate 
The learning method of the model must be selected to 
accommodate various conditions. The learning rate is 
selected in this work to vary for each model parameter. If 
the modified data is provided from past iterations as 

∇𝐿൫𝑊൯ , where 𝑗 ∈ ሺ0,1,2, … , 𝑘ሻ , then a different 
modification must be selected for all parameters 𝑖 contained 
in 𝑊. 

𝑊ାଵ
ሺሻ ൌ 𝑊

ሺሻ െ 𝜂
∇ೖቀௐೖ

ሺሻቁ

ඨ∑ ∇ೖቀௐೕ
ሺሻቁ

మ
ೖ
ೕసబ ାఢ

  (8) 

Where, 𝜖  denotes a minute positive integer applied to 
prevent dividing the numerator by zero. An exponential 
dying average of the gradient can prevent the drastic 
decrease in learning rate. This can be expressed as: 

𝑣
ሺሻ ൌ ൝

ሺ1 െ 𝛿ሻ ⋅ 𝑣ିଵ
ሺሻ  𝛿∇𝐿൫𝑊

ሺሻ൯
ଶ

 ሺ1 െ 𝛿ሻ ⋅ 𝑣ିଵ
ሺሻ ,          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

,   𝑖𝑓 ∇𝐿൫𝑊
ሺሻ൯ 

0  (9) 
Then, 

𝑊ାଵ
ሺሻ ൌ 𝑊

ሺሻ െ 𝜂𝑣
ሺሻ   (10) 

Following the modification concept, if there exist some 
swings in the gradient modification, then the learning rate 
will be damped by ሺ1 െ 𝛿ሻ, but in other cases, it appreciates 
by 𝛿. Typically, the rate of decay is initialized as 0.01 
3.  Results and Discussion 
3.1  The model simulation   
The case study substation is located in Uyo, Akwa Ibom 
State Nigeria. The case substation has some other feeders 
however, the study is based on the historical load profile of 
one specific feeder identified as the Secretariat feeder. 
Specifically, hourly feeder load data from the case study 
feeder were obtained from May 2022 to August 2022. The 
data set has 2802 row count. A python simulation program 
was written using Pycharm for the simulation of the model. 
The model performance parameter used is Mean Squared 
Error (MSE). 
Furthermore, one of the objectives of this research is to 
transform the given data using the standard scaler in order 
to minimize error. A cross-section of the raw dataset for 
Secretariat feeder is presented in Figure 2 and a cross 
section of the scaled dataset for Secretariat feeder is 
presented in Figure 3.  
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