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Abstract—In this study, power loss minimization 
in IEEE 33 bus network through optimal location 
and sizing of distributed generation using Particle 
Swarm Optimization technic is presented. Load 
flow analysis was conducted using the Newton 
Raphson method for the baseline scenario where 
there was no distributed generation (DG) in the 
network. The case study IEEE 33 bus has a total 
real power demand of 3715 kW and a total reactive 
power demand of 2300 kVar.  201.891 the total 
reactive power loss of 134.641kW which amounts 
to 5.853956522 % of the total real power is 
observed. The DG placement was done using the 
Particle Swarm Optimization (PSO) technic for 1 
DG, 2DG and 3 DG. The PSO optimization at 30% 
penetration shows that the introduction of DGs 
considerably reduced the power losses and also 
improved on the voltage stability in the power 
system. The scenario with 2 DGs provides the 
most substantial improvements, balancing power 
loss reduction and voltage profile enhancement 
effectively. Specifically, the scenario with 2 DGs 
gave the highest (over 65 %) reduction in both 
reactive and reactive power with the lowest VDI of 
2.61. The first DG of 567 kW was located at bus 
number while 14, while the second DG of 567 kW 
was located at bus number 32. In all, the PSO load 
placement and sizing showed remarkable 
reduction in the power losses and the best 
performance occurred with two DG scenario.  

Keywords— Loss Minimization,  IEEE 33 Bus 
Network, Optimal Location and Sizing, Distributed 
Generation, Particle Swarm Optimization Technic 

1. INTRODUCTION 
Distributed Generation (DG) is as small-scale power 
generation technologies installed close to the utilisation 
point, and this includes solar photovoltaics, wind turbines, 
biomass systems and fuel cells, with each having its own 
strengths and applications [1,2,3]. Again, [4] and [5] stated 
that DG units can be installed as island grids, or they could 
also be linked with the existing grid, helping to increase 
energy security while facilitating the process of 
electrification and energy transition (towards renewable 
energy sources). 

Importantly, DG plays a key role in modern power 
systems [7].  Firstly, DG improves energy security by 
reducing the dependency on centralised power plants for 
electricity generation [8,9]. Again, [10] went further to 
elaborate that DG reduces transmission and distribution 
losses because the generated power is always near their 
consumption points. Secondly, [11] contributed that DG 
enables more renewables integration into the energy 
system, which is vital for energy transition and shrinking 
the carbon footprint. Also, [12], highlighted that 
economically, adding DG defers the investments on 
building new large-scale power plants with high-capital 
outlays, creates jobs in local economies and stimulate 
technological innovation for smart grids and energy 
storage. Distributed generation can also be used to 
minimize power loss [13,4]. 

However, in order to realize the aforementioned 
benefits of DG in the power system, the DG must be 
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optimally sized and optimally located within the power 
distribution network. Consequently, in this paper, loss 
minimization in IEEE 33 bus network through optimal 
location and sizing of DG using particle swarm 
optimization (PSO) technic is presented. The study 
considered the baseline low flow analysis where there is no 
DG. The Newton Raphson approach is used for the load 
flow. Further simulation are then conducted for different 
scenarios where 1 DG, 2 DG and 3 DGs are installed using 
the PSO to determine the optimal size and location of each 
of the DGs on the power distribution network. The results 
are presented and discussed; detailing the effectiveness of 
PSO to minimize the power loss and enhance voltage 
stability through optimal DG installation. 
 
2. METHODOLOGY  
 
2.1 The load flow analysis for the baseline scenario 
 

Generally, the optimal placement and sizing of 
distributed generation on distribution network will lead to 
reduction in power. The actual percentage of reduction 
achieved depends on some factors among which is the 
approach used. In this study, the total power demand on the 
distribution network is determined for the baseline scenario 
where there is no distributed generation (DG) in the power 
network. The load flow analysis is conducted using the 
Newton Raphson method presented by [15] and the 
flowchart is shown in Figure 1. 

The DG placement is done using the Particle 
Swarm Optimization (PSO) technic. Three cases were 
considered in this study, namely, a case of 1 DG, another 
case of 2 DG and finally 3 DG. Each of the three cases 
were implemented using the PSO algorithm captured in the 
pseudo code given in section 2.2. The control parameters of 
the PSO algorithm used to conduct the study are presented 
in Table 1. The line data of the IEEE 33 bus are given in 
Table 2 while the load data are given in Table 3 
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Figure 1 The flowchart for the Newton Raphson Algorithm-based load flow analysis for the baseline scenario 

without DG (Source: [1]) 

2.2 The Particle Swarm Optimization (PSO) 
Pseudocode for DG Placement and Sizing 

 
i. Initialize necessary parameters and candidate 

locations for DG; 
ii. while not termination do: 

iii. Generate particle swarm; 
iv. for each particle do: 
v. Select a candidate location for DG based on 

particle's position; 
vi. Determine the size of DG at the selected 

location; 

vii. End for 
viii. Evaluate the fitness of each solution (i.e., power 

loss and voltage stability for the given DG 
placement and sizing); 

ix. Update the best personal and global positions; 
x. Update particle positions and velocities based 

on the best found positions; 
xi. End while 

xii. Return the best solution found; 
xiii. End procedure.	
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Table 1: Control parameters of the PSO algorithm used to conduct the study 
Parameters Values Explanation 

Population size 50 
Defines the number of search agents (particles) exploring the solution 

space simultaneously. 

Maximum iterations 100 
Sets the maximum number of times the PSO loop (particle movement 

and update) will be executed. 
Minimum weight of 

inertia (𝜔௫) 
0.4 

Controls the exploration-exploitation balance of particles. Higher 
𝜔௫ allows wider exploration initially. 

Maximum weight of 
inertia (𝜔) 

0.9 
This value influences the exploitation behavior in later iterations, 
guiding particles towards promising regions of the search space. 

Social acceleration 
coefficient (𝑐ଵ) 

1.5 
Influences exploitation in later iterations, guiding particles towards 

promising regions. 

Cognitive acceleration 
coefficient (𝑐ଶ) 

2.0 
Controls the influence of a particle's personal best (Pbest) on its 

movement. Allows particles to explore promising regions based on 
their experiences. 

 

Table 2: The line data of the IEEE 33 bus test system (Source :[16]) 

Line Data

S/N  From Bus  To Bus  Line Resistance (Ω) Line Reactance (Ω) 
1  1  2  0.0922 0.047 

2  2  3  0.493 0.2511 

3  3  4  0.366 0.1864 

4  4  5  0.3811 0.1941 

4  5  6  0.819 0.707 

6  6  7  0.1872 0.6188 

7  7  8  0.7114 0.2351 

8  8  9  1.03 0.74 

9  9  10  1.044 0.74 

10  10  11  0.1966 0.065 

11  11  12  0.3744 0.1238 

12  12  13  1.468 1.155 

13  13  14  0.5416 0.7129 

14  14  15  0.591 0.526 

15  15  16  0.7463 0.545 

16  16  17  1.289 1.721 

17  17  18  0.732 0.574 

18  2  19  0.164 0.1565 

19  19  20  1.5042 1.3554 

20  20  21  0.4095 0.4784 

21  21  22  0.7089 0.9373 

22  3  23  0.4512 0.3083 

23  23  24  0.898 0.7091 

24  24  25  0.896 0.7011 

25  6  26  0.203 0.1034 

26  26  27  0.2842 0.1447 

27  27  28  1.059 0.9337 

28  28  29  0.8042 0.7006 

29  29  30  0.5075 0.2585 

30  30  31  0.9744 0.963 

31  31  32  0.3105 0.3619 

32  32  33  0.341 0.5302 
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