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Abstract— The analytical modelling and 
simulation of solid waste disposal container 
motion parameters during normal trailer mobility 
condition is presented. The analytical models for 
the weight of the container, the velocity, 
acceleration, airspeed, drag force, drag moments, 
and slip angle of the vehicle   as it transports the 
waste container to the destination of the waste are 
presented. The analytical models are essential for 
monitoring the incidences of tempering of the 
waste while on transit. The parameters are 
modelled in simulink and the simulations are 
conducted based on a given case study parameter 
specifications. The simulation results showed that 
the acceleration on the x-axis increased and 
normalized at 10km/hr2 within 0.083 hours (which 
is 4.98 minutes). The acceleration of the vehicle in 
y-direction normalized after 0.2 hrs (which is 12 
minutes), The acceleration of the vehicle in y-
direction failed to normalize as fast as that of the 
x-direction due to the force on the vehicle being 
more in y-direction.  The drag moments on the 
vehicle increased normally and became saturated 
after 0.2 hours. The load of the waste in the 

container was 10 tonnes. The detailed simulation 
results showed that the models can be used to 
effectively monitor the key motion parameters of 
the waste container and its weight while the 
vehicle is in normal motion condition. This will 
help in the design of tampering monitoring 
mechanism which will checkmate unauthorized 
removal of toxic waste during the waste disposal. 

Keywords— Solid Waste, Tampering 
Monitoring Mechanism, Waste Disposal, Airspeed, 
Drag Force, Drag Moments, Slip Angle 

 
1. INTRODUCTION 

Nowadays, the use of emerging Internet of Things (IoT) is 
widely spreading across the globe [1, 2]. The use of IoT in 
the waste disposal management system is therefore part of 
the ongoing transition to smart systems technology [3, 4]. 
With such technology, it is possible to efficiently manage 
waste disposal in such a way that the waste bins are 
remotely monitored and only evacuated when the remote 
monitoring system indicates that the waste bin is full. Such 
technology will therefore minimize the time and other 
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resources used in the management of the waste evacuation 
from the waste bins [5,6].  
Also, satellite mapping system can be used along with the 
population data to determine the appropriate locations for 
the waste bins and the capacity or number of a given waste 
in that can be located at any given site [7,8,9,10]. Historical 
data of the waste disposal system can be used to further 
optimize the waste disposal system [11,12,13]. Given the 
numerous possibilities that are afforded by the emerging 
technologies, in this paper, the focus is to still move the 
frontiers of possibilities by including tracking of waste on 
transit, with emphasis on identifying tampering incidence 
while the waste is on transit. This is particularly useful in 
monitoring toxic waste to avoid it being circulated in the 
society thereby endangering the life of members of the 
community [14,15]. Specifically, the paper presented 
mathematical model for capturing the dynamics of the 
weight, velocity and other forces on the waste disposal 
container under normal motion condition. The model serves 
as the basis for studying the effect of obstruction, 
tampering, and other factors on the weight, velocity and 
other forces on the waste disposal container. The models 
are then simulated using some sample dataset and the 
results are presented ad discussed. 
 
2. METHODOLOGY 
The solid waste is transported in a container by a trailer 
with requisite velocity and weight sensors, as well as 
communication circuitry that transmits the sensor data to 
remote server for personnel in charge of the waste disposal 
management system to assess the data and take actions 
appropriately. The focus in this study is to present the 
analytical model for the velocity and weight of the toxic 
solid waste container during normal trailer mobility 
condition. Based on the analytical models, the simulation is 
carried out using Matlab/Simulink software. 
2.1 The analytical models of the solid waste 

container during the normal trailer mobility 
condition  

 
For the dynamics, the acceleration A of the vehicle along x-
axis is; 
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The acceleration for the y-axis is; 
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The vehicle resultant velocity is; 
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Where Ax is the acceleration at the x-coordinates, Ay 

represents the acceleration at y-coordinates, Vr represents 
the resultant velocity of the toxic waste container, Vx 
represents the velocity at of the trailer at x-coordinates, Vy 
represents the velocity at y-coordinates. 𝐹௫௙௟ , 𝐹௬௙௟ 
represents the lateral force applied to the toxic load during 
the movement of the container in x and y coordinates 
respectively,  𝐹௫௥௟ , 𝐹௬௥௟ represents the lateral force applied 
to the left side and right side of the container during 
mobility of the trailer in x and y coordinates respectively, 
𝐹௫௘௫௧ , 𝐹௬௘௫௧  represents the external force on x and y 
coordinates of the container during mobility  and 𝐼௭௭௭  

represents the load inertia during transportation and a,b,c,d 
represents the distances of rear, front left side and right side 
wheel from the normal point of projection of the vehicle. 
The airspeed is given; 
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Where wwx, wwy and wwR represents the airspeed of the 
container during mobility at x-coordinates, y-coordinates 
and resultant condition, Wsx and Wsy represents the wind 
speed at x and y coordinates and Vx, Vy and VR represents 
the velocity of the container in x and y coordinates and the 
resultant velocity. The effect of the toxic load on the trailer 
mobility (drag moments) is given as; 

𝑓ௗ௫ ൌ
ଵ

ଶ.ହோ்
𝐴ௗ௫𝑎௙ሺ𝑤𝑤௫ሻଶ   (7) 

𝑓ௗ௬ ൌ
ଵ

ଶ.ହோ்
𝐴ௗ௬𝑎௙൫𝑤𝑤௬൯

ଶ
   (8) 

𝑓ௗோ ൌ  ඨ
ቀሺ௙೏ೣሻమି൫௙೏೤൯

మ
ቁ

ଶ௙೏ೣ௙೏೤
  (9) 

Where fdx, fdy and fdR represents the drag force of the trailer 
vehicle on the toxic load in x and y coordinates and the 
resultant respectively, Adx and Ady represents the air drag 
coefficients the toxic load exerts on the mobile vehicle, af 
represents the front area of the mobile vehicle and wwx, 
wwy represents the airspeed of the container during 
mobility at x-coordinates, y-coordinates and R and T 
represents the atmospheric specific air constant and 
environmental air temperature respectively. 
Hence, the drag moments are given as; 
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Where mdx, mdy and mdR represents the toxic waste 
container drag moments in x and y coordinates, and 
resultant respectively. The expected slip angles of the 
vehicle are; 

𝐴𝑓𝑡௫ ൌ arctan ൭
஺ೣା௙೏ೣ

௏ೣ ି൬
೘೏ೣ
೘೏ೃ

൰
൱  (13) 

𝐴𝑓𝑡௬ ൌ arctan ൭
஺೤ା௙೏೤

௏೤ି൬
೘೏೤
೘೏ೃ

൰
൱   (14) 

𝐴𝑓𝑡ோ ൌ ቆቀ
ଵ

஺௙௧ೣ
ቁ

଴.ହ
൅ ൬

ଵ

஺௙௧೤
൰

଴.ହ

ቇ 𝑚ௗோ (15) 

Where Aftx, Afty and AftR represents the slip angles of the 
wheels of the vehicle at x and y coordinates and resultant, 
Ax and Ay are the dynamic acceleration of the vehicle in x 
and y coordinates, Vx and Vy represents the dynamic 
velocity of the vehicle and mdR represents the resultant drag 
moments of the container. 
The expected or normal velocity of the vehicle (which 
would be the same for all the sensor positions) from kick 
off of the vehicle to the normalized velocity is given as; 
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Figure 4.41; Weight of the container at normal condition 
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Figure 42; Weight of the toxic container during deceleration of the truck 

 
3.11 Results on the weight of the container at static 
condition:  
The weight of the container at static point (absence of 
vehicular motion) is shown in Figure 43 (at both velocity 
and acceleration being zero). The absence of velocity and 

acceleration implies that the truck with the toxic was not in 
motion. The load of the waste in the container was 10 
tonnes which means for the period of 15mins at static 
position, the load from all the sensors was 10 tonnes. 
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Figure 43; Weight of the container at static velocity 

 
4 CONCLUSION 

 
The study presented analytical approach to characterize the 
weight and some key motion parameters of a solid waste 
container as it is being transported to the destination of the 
waste. The analytical models are essential for determination 
of the incidences of tempering of the waste while on transit. 
This particular work focused on the occasion where the 
vehicle conveying the solid waste container is on normal 
motion condition; meaning the vehicle is in constant 
velocity, there is no acceleration, deceleration, and no 
obstruction and not on a sloppy terrain.  Under this 
condition, the analytical models are used to characterize the 
weight, air drag, velocity and other resultant parameters 
that will help automated decision support mechanism to 
determine when there is likelihood of tampering of the solid 
waste. These parameters are captured by sensors installed 
on the solid waste container and sent through a wireless 
communication channel to a remote computer system for 
further analysis and actions. 
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