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Abstract— In this paper, statistical analysis of 
mean Euclidian distance of sensor nodes in a 
clustered network using Incremental Batch K-
Means approach is presented. The mean Euclidian 
distance of clustered sensor nodes is determined 
using Incremental Batch K-Means (IBKM) 
approach. Statistical analysis is also conducted 
for describing the clustered sensor nodes 
Euclidian distance distribution category and the 
impact of the statistical parameters on the 
network implementation.  The case study sensor 
network consists of 2000 sensor nodes randomly 
located within a network coverage area of 1000 m 
by 1000 m. The IBKM algorithm was used to group 
the sensor nodes into 6 clusters.  The result of the 
IBKM algorithm implementation show that the 
iteration converged to the optimal cluster head 
(centroid sensor nodes) placement with 6 clusters 
at about the 22nd iteration. The results also show 
that cluster 0 has the largest Mean Euclidian 
distance (MED)  value of 1730.8 m while cluster 2 
has the lowest MED value of 1328.7 m.  The entire 
sensor network has mean MED of 1566.1 m.   In 
addition, the results show that Euclidian distance 
of the sensor nodes are normally distributed with 
mean of 1566.09 m and standard deviation of  
651.57 m. The MED  has a range of 1698.33 m with 
Mean Absolute Deviation (MAD)  of 535.28 m,  
Root Mean Square (RMS) of 1696.17 m and 
Standard Error of Mean of 14.57 m.  In all, sensor 
node cluster 0 is the critical cluster with potential 
highest energy consumption due to the largest 
MED value. 
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1. INTRODUCTION 
Today, sensors and sensor networks are the bedrock of 
smart applications [1,2,3]. Smart applications use the sensor 
nodes to monitor the environment or system and through 
the use of communication mechanism, the sensor relay the 
captured data to remote systems or server [4,5,6]. In many 
cases, large number of sensors are deployed and base 
stations or gateways are needed to connect the sensors to 
the sensor nodes to the remote server [7,8,9]. In such cases, 
the placement of each of the base stations in each of the 
clusters in clustered network requires the use of clustering 
algorithm. The clustering algorithm implementation will 
give rise to a given mean distance per cluster which is 
considered to be optimal [10,11]. 
In this paper, the mean Euclidian distance (MED) realized 
in a clustered sensor network using the Incremental Batch 
K-Means (IBKM) algorithm is studied [12,13,14]. The 
study focused on statistical analysis of the MED realized 
when the IBKM is implemented repeatedly of a given set of 
sensor nodes distributed within a given network area. The 
study provides analytical evidence of the variations in the 
optimal MED realized with the IBKM. The study uses 
statistical approach to determine how the Euclidian distance 
of the nodes are distributed relative to the MED. It also 
determine whether the Euclidian distance of the nodes are 
normally distributed when the IBKM algorithm is 
repeatedly implemented on the same set of sensor nodes in 
a given network area. 
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Figure 2 The percentile for the Euclidian distance, (𝑗,) versus the number of sensor node that has their Euclidian distance in the 

range  with respect to the maximum Euclidian distance in the entire sensor network 

 
Figure 3  The normal distribution graph plot of the percentile 

 
4. CONCLUSION 
The clustering of sensor node using Incremental Batch K-
Means (IBKM) approach is studied. The statistical 
distribution of the Euclidian distance of the sensor nodes 
within each cluster is studied to identify the critical cluster 
in the network. Some key statistical parameters of the 
distribution are also considered. In all, it was observed from 
the results that out of the 6 clusters generated from the 
IBKM algorithm, cluster 0 has the highest MED value and 
hence is the critical cluster when considering the energy 
consumption and battery lifespan for the sensor nodes. 
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