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Abstract—The occurrence of system disturbance 
is a major problem in a large interconnected 
power system with the consequence of creating 
an intra-area oscillating modes. These modes 
which are basically decaying sinusoids are also 
termed as the transient responses of the power 
system network to excitation. Proper and 
immediate identification of any dangerous 
oscillating mode occasioned by disturbances 
such as equipment failure would ensure both 
security and stability of interconnected power 
system. Consequently, the power utility must then 
deploy the correct damping control methods. Both 
rapid detection of critical and significant changes 
due to the breakdown of equipment and the 
estimation of modal parameters for an 
interconnected power system networks, which is 
observed to be in a stable and normal operation 
are basically the two major areas of focus as far 
as power system monitoring is concerned. This 
article presents a comprehensive review of 
advanced monitoring methods for quickly 
detecting modal deterioration, with a focus on 
short-time frame detection. We discuss various 
techniques, including energy-based detectors 
(EBD), Kalman innovation detectors (KID) and 
optimal individual mode detectors (OIMD), and 
highlight their strengths and limitations. The 
review aims to provide a valuable resource for 
researchers and engineers working on power 
system monitoring and control. The practical 
applications of this research include; improved 
system reliability, reduced risk of catastrophic 
failures and enhancement of overall grid 
resilience. 

Keywords: Interconnected Power Systems; 
Optimal Detection Strategy; Rapid detection of 
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1. INTRODUCTION

Large interconnected power distribution networks, 
occasioned by global evolution of the economy of the 
electrical utility industry, has resulted in particular 
emphasis being laid on reliable and secure operations 
[1]. To facilitate security and reliability of operations, 
wide-area observation and control are needed in large 
interconnected power systems. Several wide-area 

monitoring strategies have been established in order 
to meet up with these requirements [2],[3]. Within the 
distribution network, the power system can be 
monitored at various locations. This is one of the key 
strategies including employing Global Positioning 
System (GPS) which can be used to synchronize the 
acquired information [4].

Modal analysis being a mathematical tool is 
deployed in power system to carefully study small 
signal stability and inter-area oscillations. It highlights 
a clear technical solution used to attenuate inter-area 
oscillations and how such solution can be applied to a 
specific scenario. It equally determines the critical and 
precise network parameters that should to be known 
in order to adequately diagnose any eventual inter-
area oscillation [5]. Monitoring the situation and 
condition of power system stability is very critical for 
power distribution network with particular emphasis on 
inter-area oscillations whereby this stability, to a large 
extent depends on all inter-area oscillations being 
positively damped. These are oscillations that 
correspond to transient power flows among plants 
within a specific area in the large interconnected 
power system [6]. Monitoring and control of these 
oscillations is very critical and has particularly proven 
to be challenging compared with monitoring and 
control of oscillations associated with a single 
generator [6]. 

Inter-area oscillation appears when generators on 
one side of the connection line starts to oscillate 
against generators on the other side resulting in 
periodic electric power transfer along the line. They 
are observed in large power systems connected by 
weak tie lines though can affect smaller systems too 
[5]. In the transient ability of the system to stabilize 
post disturbance, it is the “ring-down” time of the 
damping factor that is of consequence. Therefore, to 
minimize power flows between the generation clusters 
and reduce the associated stresses within the 
generation and transmission infrastructure, it is 
important that the transient time is stable and quick. 
As a consequence, there has been much work done 
regarding estimation of damping factor in large 
distributed power systems. Existing research works 
have deployed Eigen analysis [7] as well as Prony’s 
analysis [8]. For proper and accurate estimation of 
damping factor, a large amount of relevant data is 
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needed [8]. Therefore, conventional damping factor 
estimation techniques are not suitable for rapidly 
detecting sudden changes in modal damping. This 
work addresses these drawbacks by explaining a 
number of new monitoring methods which can provide 
signs of detrimental modal parameter change with 
very short data records in minutes.  

2. EXISTING MODAL ESTIMATION METHODS  

Traditional modal estimation strategies are 
techniques which focus on accurately estimating 
modal parameters (frequency damping and mode 
shape) under steady state conditions. Power systems 
have become large and interconnected with some 
complexities thereby affecting the efficiency of the 
system in terms of vulnerability to system instability. 
This challenge has made it a necessity to perform 
reliable detection of system disturbances from modal 
oscillation data records, whether it is those from single 
isolated disturbance or continuous random 
disturbances. 

2.1 Eigen analysis of Disturbance Modes 

Eigen Analysis is a technique of decomposing a 
system into its fundamental modes of oscillation. It 
provides information on mode shapes, frequency, 
system dynamics and it is used to analyze overall 
system behavior [9]. In carrying out Eigen analysis of 
a power system, a system matrix is formed and the 
QR algorithm is deployed to compute the eigenvalues 
of the matrix [9],[10]. Thereafter, relevant parameters 
of the modal oscillation can be determined from the 
eigenvalues. This strategy has proven to be very 
reliable and has been adopted globally by different 
power utilities. Sadly, this method is not best fitted for 
large interconnected power systems, which is the 
reason for its various modifications by researchers. 
Uchida and Nagao made modification in eigen 
analysis by proposing the use of the “S matrix 
method”[7]. In this method, it is assumed that the 
dynamics of power systems can be linearly 
approximated with a set of differential equations of the 
form, x = Ax, where x is the vector state of the system 
and A is the system matrix. Byerly et al. equally 
developed the best-known algorithm called; Analysis 
of Essentially Spontaneous Oscillations in Power 
Systems (AESOPS). The advantage of the algorithm 
is that it does not require the explicit formation of the 
system state matrix [11]. The challenge of the 
AESOPS effort is the deficiency it has in analyzing 
very large interconnected systems. 

2.2 Prony’s Method of Spectral Analysis  

Exponentially damped sinusoids in a signal can 
have its parameters estimated by deploying Prony’s 
method. Also, it can be used to analyze power system 
oscillations such as those caused by faults and 
disturbances [10][12]. Though, it was delayed until the 
advent of digital computer, this method originated in 
an earlier century with the capacity to be practically 
implemented.  

Researches on the use of this technique for 
oscillation modal parameter estimation have been 
conducted [13], with many providing deep insights into 
the concept. Ideally, the effectiveness of Prony’s 
technique is only guaranteed whenever the noise 
power is negligible. Gomez Martin and Carrion Perez 
introduced some extensions in working with noisy 
data with the application of Prony’s method. This was 
done by using a moving window in both forward and 
backward directions [14]. This position was further 
collaborated by Kannan and Kundu [15]. 

2.3 The Sliding Window derivation 

Basically, the method used the rate of deterioration 
of the Fourier transform as a rectangular window 
slides to determine the damping factor of the mode 
[16]. The result showed good correlation compared to 
conventional techniques. However, the limitation was 
the restrictions on the length of the window that could 
be used. Such restriction was necessary to avoid 
errors occasioned by the interference from the 
superposition of the positive and negative frequency 
components [16],[17]. This interference was 
formulated by the large side lobes of the spectral sinc 
function introduced by the rectangular windowing. In 
line with the research, the window lengths only had 
certain discrete values, at which the interference 
turned out to be zero. The challenge was that the 
window length was dependent upon the modal 
frequency. Therefore, this frequency had to be 
correctly and initially estimated before implementation 
of windowing. 

2.4 Auto-correlation Techniques 

Since the auto-correlation function of a system 
triggered by white noise reveals the impulse response 
of that system, then obviously the auto-correlation 
function of the differentiated power system 
disturbance output should be the impulse response of 
the power system. This means that it will take the form 
of a sum of complex exponentials, then the modal 
parameters can be determined using Prony analysis 
[18]. 

Auto-correlation techniques were further examined 
by [10] through modeling disturbances using noise to 
depict customer’s load variations and an impulse to 
connote a disturbance thereby determining resonant 
frequencies and mode shape. The simulation results 
though provided concrete relationships to a known 
system’s eigenvalue, mode shape and resonant 
frequencies, it did not make any reference to the 
several drawbacks of mode spacing [10]. 

2.5 Kalman Filter Innovation Techniques 

This strategy is a very critical and optimal linear 
estimator; which has been used severally in different 
areas such as; state and parameter estimation, 
stochastic models etc. There are many variations of 
Kalman filter for non-linear systems including 
unscented and extended Kalman filters. In this review, 
emphasis is on the Kalman filter innovation which is 
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To detect a change in the mode of interest; 
choosing Y1 (k) as the frequency domain reference 
signal, the remainder of the frequency domain 
observation, Y2 (k), will becomes the interference 
signal. Therefore, in line with a standard optimal 
detection theory, a whitening filter is created to whiten 
the interference: 

 𝐻𝑤ℎ ሺ𝑘ሻ ൌ  𝐻ଶషభ ሺ𝑘ሻ (9) 

Again, consistent with standard optimal detection 
theory, the whitening filter is applied to both the 
reference and observation signals. The corresponding 
PSDs are then determined as follows: 

 𝑃𝑆𝐷௦ ሺ𝑘ሻ ൌ | 𝑋 ሺ𝑘ሻ|2|𝐻௪ሺ𝑘ሻ|ଶ ൌ
 |𝑊 ሺ𝑘ሻ|ଶ|𝐻௦ሺ𝑘ሻ|2|𝐻௪ሺ𝑘ሻ|ଶ (10) 

 𝑃𝑆𝐷 ሺ𝑘ሻ ൌ  | 𝐻ଵሺ𝑘ሻ |ଶ|𝐻௪ሺ𝑘ሻ|ଶ𝐸 ሼ|𝑊 ሺ𝑘ሻ|ଶሽ (11) 

Where E { } denotes the expected value. 

Now cross-correlate (10) and (11) to obtain the 
detection statistic 𝑛 shown in Figure 4: 

 𝑛 ൌ  ∑ 𝑃𝑆𝐷 ሺ𝑘ሻ𝑃𝑆𝐷௦ ሺ𝑘ሻ.ே/ଶ
ୀ ିே/ଶ  (12) 

To practically apply the detection statistic in the 
detection process, a threshold level must be 
determined. A probability density function (PDF) of the 
detection statistic is required to be able to accurately 
set the threshold based on the PDF at a desired level 
of confidence. 

4.4 Statistical Characterization of the Detection 
Statistic η 

The formulation of Mode 1 detection statistic PDF, 
being the mode of interest, is as follows: To derive the 
detection statistic PDF, (12) can be expanded using 
(10) and (11) to give:  

𝑛 ൌ
 ∑ 𝐸ሼ|𝑊 ሺ𝑘ሻ|ଶሽ |𝐻ଵ ሺ𝑘ሻ|ଶ|𝐻 ሺ𝑘ሻ|ଶ|𝐻௪ሺ𝑘ሻ|ଶ|𝑊 ሺ𝑘ሻ|ଶே/ଶ

ୀିே/ଶ  
(13) 

 Re-written as; 

𝑛 ൌ  ∑ |𝑍ሺ𝑘ሻ|ଶ|ே/ଶ
ୀିே/ଶ  𝑊 ሺ𝑘ሻ|ଶ (14)  

Where Z (k) is defined as: 

𝑍 ሺ𝑘ሻ ൌ  |𝐻ଵሺ𝑘ሻ‖𝐻 ሺ𝑘ሻ‖𝐻௪ ሺ𝑘ሻ|ଶ ඥ𝐸ሼ|𝑊 ሺ𝑘ሻ|ଶሽ. (15) 

It must be noted clearly that the expression in (14) 
contains W(k) which is a complex Random Variable 
(RV) with real and imaginary parts. Furthermore, the 
squared magnitude of |W (k)|ଶ is:  

|𝑊ሺ𝑘ሻ|ଶ ൌ  𝑅𝑒𝑎𝑙 ሼ𝑊 ሺ𝑘ሻሽଶ   𝐼𝑚𝑎𝑔 ሼ𝑊 ሺ𝑘ሻሽଶ (16) 

Where Real { } and Imag{ } denote the real and 
imaginary parts respectively. It is assumed that the 
variance of w(n) is σ2. Then W(k) is a complex 

Gaussian RV with variance, 
ଶ

ே
 [10]. Then the left hand 

side of (16) is a chi-squared RV with two degrees of 
freedom and variance, 

ଶ

ே
 [10]. That is, the PDF of any 

discrete “bin” in the W(k) power spectrum is:  

𝑓ሼ𝑥ሽ ൌ  
ே

ଶ
 𝑒

షೣಿ
ಚమ  , (17) 

where x, is the random variable power. 

Using (14) and (17), the PDF of |𝑍 ሺ𝑘ሻ|ଶ |𝑊 ሺ𝑘ሻ|ଶ at 
discrete ensemble frequency k can be deduced: 

𝐽𝑍𝑊ሺ𝑥ሻ ൌ ቚ
ଵ

| ሺሻ|మቚ  𝑓. 〈 ௫

| ሺሻ|
〉 =

ே

| ሺሻ|మ మ
ି௫ே

|ሺሻ|మమ 
 (18) 

From (14), it is apparent that the detection statistic 
is obtained by summing N random variables (RVs). 
Only half of these random variables are independent, 
because the negative frequency half, of the spectrum 
contains the same information as the positive 
frequency half. Since one side of the spectrum 
contains all the information necessary, then the PDF 
of the detection statistic is formulated from only one 
half of the spectrum. Now, the detection statistic in 
(12) is reformulated and redefined as (19): 

𝑛 ∑ 𝑃𝑆𝐷

ಿ
మ
ୀଵ ሺ𝑘ሻ𝑃𝑆𝐷௦ሺ𝑘ሻ 

 
ଵ

ଶ
 𝑃𝑆𝐷 ሺ0ሻ𝑃𝑆𝐷௦ ሺ0ሻ. (19)  

Because (19) indicates that the threshold is the 
sum of N/2 +1 independent random variables, its PDF 
can be computed by convolving the PDFs, the N /2 +1 
individual random variables. Consequently and the 
PDF of the detection statistic for the mode of interest 
is given by: 

𝑓𝑛 ሺ𝑧𝑤ሻ ൌ 𝑓𝑧𝑤ே/ଶ  ൬𝑧𝑤ಿ
మ

൰ ∗  𝑓𝑧𝑤ಿ
మ

ିଵ
 ൬𝑧𝑤ಿ

మ
ିଵ

൰ ∗

 
ଵ

ଶ
 𝑓𝑧𝑤 ሺ𝑧𝑤0ሻ. (20)  

Expanding the above gives the PDF of the test 
statistic for the mode of interest - Mode 1 as: 

 𝑓ሺ𝑧𝑤ሻ ൌ
ே

ఙమ

⎣
⎢
⎢
⎢
⎢
⎢
⎡

ଵ

ଶ
|𝑍ሺ0ሻ|ିଶ𝑒ି௫

ಿ
మ

௭ሺሻషమఙషమ

∗ |𝑍ሺ1ሻ|ିଶ𝑒ି௫
ಿ
మ

௭ሺଵሻషమఙషమ

∗ |𝑍ሺ2ሻ|ିଶ𝑒ି௫
ಿ
మ

௭ሺଶሻషమఙషమ

∗ |𝑍ሺ𝑁/2ሻ|ିଶ𝑒ି௫
ಿ
మ

௭ሺே/ଶሻషమఙషమ
⎦
⎥
⎥
⎥
⎥
⎥
⎤

 (21) 

Where * denotes convolution. From the PDF in 
(21), the threshold for detection of change can be 
formulated. To establish the 1% false alarm rate, the 
cumulative summation of the PDF area is taken until 
the 99% point is determined. 

4.5 Method of Implementation 

Initial estimates of the quasi-stationary system 
parameters are required to assist modal 
characterization. That is, a long term estimator (LTE) 
is applied to a relatively long record, for instance one 
hour of quasi-stationary data. Under normal operating 
conditions, while the modal deterioration algorithm is 
applied continuously, the estimates are updated once 
every half an hour. The long term estimator technique 
under review is outlined in [10], and provides 
estimates of the measurement site transfer functions 
and modal parameters. From this, the individual 
modal response estimates at any selected site can be 
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measured from plant output, y(n), corresponds to a 
vector of measurements from multiple recording sites. 
In real life scenario, the measurements are voltage 
angle measurements rather than power 
measurements because the potential for modal 
information extraction is greater for voltage signals 
than for power signals [18]. The optimal placement of 
these measurement sites within a large distributed 
power system is discussed in [4]. The vector v(n) 
represents noise measurements from each selected 
site. In a practical application, the plant output 
measurement vector, y(n) can be recorded at a GPS 
synchronized wide area monitoring centre [4]. 

If there is a sudden change in the power system 
response, the spectrum of the innovation will highlight 
this change with a peak around the modal frequency 
in question. Conversely, in a power system operating 
under stationary conditions, the innovation will be 
white and will have a flat Power Spectral Density 
(PSD). Therefore, with a suitable threshold set, large 
undesirable damping changes can be readily 
detected. A suitable threshold is one which is set to 
give a False Alarm Rate (FAR). For instance, if the 
FAR is set to 1% then when an alarm occurs, one 
knows that it is a genuine alarm with 99% confidence. 
The purpose of this method is to detect sudden large 
detrimental changes and not to detect small changes 
in system parameters [10]. Consequently, while still 
providing the required rapid alarming of sudden 
system deterioration, thresholds should be set to 
minimize false alarm. The innovation is said to detect 
a frequency shift instead of a damping change 
whenever the innovation’s PSD display a peak around 
the new modal frequency and a trough around the 
original modal frequency. 

5.2 Kalman Application in Power System 
Analysis 

5.2.1 Kalman formulation in Power System 

In the power system model under review, the state 
and output equations are as follows: 

X(n+1) = Ax(n) + Gw (n) (22) 

Yv(n) = Cx(n) +Dw(n) +v(n) (23) 

Where, A, G, C and D denote the usual state and 
output equation matrices [10]. The noise processes, 
w(n) and v(n), are zero mean Gaussian white noise 
sequences with co-variances given by the following 
equations: 

Eሼ𝑤ሺ𝑛ሻ𝑤ሺ𝑛ሻ்ሽ ൌ 𝑄 (24) 

Eሼ𝑣ሺ𝑛ሻ𝑣ሺ𝑛ሻ்ሽ ൌ 𝑅 (25) 

Eሼ𝑤ሺ𝑛ሻ𝑣ሺ𝑛ሻ்ሽ ൌ 𝑁 (26)  

Where E(.) denotes expected value. Two 
assumptions are important, first; will be that w(n) and 
v(n) are uncorrelated and that the plant is excited by a 
common white noise source, w(n). However, the plant 
response to such excitation is measured at various 
geographic locations. The measurement noise, v(n), is 

a vector that is congruent to the wide-area monitoring 
of inter-area oscillations. The load variations become 
close to Gaussian when there are large number of 
independent customer loads [18],[24]. In normal 
stationary operation, the optimal Kalman state 
estimator is given by the following set of discrete 
equations [20]: 

𝑥ොሺ𝑛  1 𝑛⁄ ) = A𝑥ො (n/n) + Gw(n) (27) 

  

𝑥ොሺ𝑛 𝑛⁄ ) = 𝑥ොሺ𝑛 𝑛 െ 1ሻ  𝑀𝑦ሺ𝑘ሻ⁄  (28) 

  

𝑦ොሺ𝑛ሻ ൌ 𝐶𝑥ොሺ𝑛 𝑛 െ 1ሻ⁄  (29) 

Y(n) = yv (n) - 𝑦ො(n) (30)  

Where y(n) is the white zero mean Gaussian 
“innovation” sequence with units rad/sec. The gain 
matrix, M, is calculated from the following equations: 

P (n+1 𝑛⁄ ሻ ൌ 𝐴𝑃 ሺ𝑛 𝑛⁄ ሻ𝐴  𝑄 (31) 

V = CP (𝑛 𝑛 െ 1ሻ𝐶ᇱ⁄ +R (32) 

 M = P (𝑛 𝑛 െ 1ሻ𝐶்𝑉ିଵ⁄  (33)  

P (𝑛 𝑛⁄ ) = P (𝑛 𝑛 െ 1ሻ െ 𝑀𝐶𝑃 ሺ𝑛 𝑛 െ 1⁄ ሻ⁄  (34) 

Where P (i/j) is the estimation error co-variance of 
the state estimates vector, 𝑥ො(i/j), and v is the co-
variance of the innovation vector, y(n). The gain 
matrix, M, is derived by solving the discrete time 
Ricatti equation [10],[25],[26]. 

5.2.2 State space representation of the power 
system model 

To effectively generate the matrices A, G, C and D 
for the power system model in Fig. 6, the transfer 
function of h(n) is first identified. This enables proper 
formulation of the state space matrices into 
controllable canonical form. To illustrate the process, 
a power system example comprising a two mode 
system with single site measurement and disturbance 
is considered. The impulse response at the site is 
assumed to be:  

h(t) = h1(t) +h2(t) (35)  

Where 

 hi(t) =Ai𝑒ିఙ௧ sin(𝜔𝑡ሻ i = 1, 2. (36) 

𝜎 is the modal damping, , 𝜔 is the modal 
frequency and Ai is the magnitude respectively of the 
ith mode. Taking the Laplace transform of (35) yields 
the continuous time power system transfer function. 

H(s) = 
భఠభ

ሺ௦ାఙభሻమା ఠభ
మ   

మఠమ

ሺ௦ାఙమሻమା ఠమ
మ (37)  

If the sampling period is T, then the discrete time 
transfer function for the site is; H(z) = 

భ௭షభୱ୧୬ ሺఠభ்ሻ௭షభ

ଵିଶషభ ୡ୭ୱሺఠభ்ሻ௭షభାషమషమ + 

మ௭షమୱ୧୬ ሺఠమ்ሻ௭షభ

ଵିଶషమ ୡ୭ୱሺఠమ்ሻ௭షభାషమమషమ 
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= 
భ௭షభାమ௭షమାయ௭షయ

ଵାభ௭షభାమ௭షమାయ௭షయାర௭షర (38) 

Where the coefficients, ሼ𝑏ଵ, 𝑏ଶ, 𝑏ଷ, 𝑎ଵ, 𝑎ଶ, 𝑎ଷ, 𝑎ସሽ are 
given by: 

 𝑏ଵ ൌ 𝐴ଵ𝑧𝑒ିఙభ௧ sinሺ𝜔ଵ𝑇ሻ  𝐴ଶ𝑧𝑒ିఙభ௧sin ሺ𝜔ଵ𝑇ሻ (39) 

𝑏ଶ= െ2𝑒ି்ሺఙభାఙమሻሺ𝐴ଵ sinሺ𝜔ଵ𝑇ሻ cosሺ𝜔ଶ𝑇ሻ 
𝐴ଶ sinሺ𝜔ଶ𝑇ሻ 𝑐𝑜𝑠𝜔ଵ𝑇ሻሻ (40) 

𝑏ଷ =ሺ𝐴ଵ𝑒ି்ሺఙభାఙమሻ sinሺ𝜔ଵ𝑇ሻ 𝐴ଶ𝑒ି்ሺఙభାఙమሻ sinሺ𝜔ଶ𝑇ሻሻ 
(41)  

𝑎ଵ = െ2ሺ𝑒ିఙభ் Cosሺ𝜔ଵ𝑇ሻ  𝑒ିఙమ் Cosሺ𝜔ଶ𝑇ሻሻ (42)  

𝑎ଶ = 𝑒ିଶఙమ்  4𝑒ି்ሺఙభାఙమሻ Cosሺ𝜔ଵ𝑇ሻ Cosሺ𝜔ଶ𝑇ሻ 
𝑒ିଶఙభ் (43)  

𝑎ଷ = -2(𝑒ି்ሺఙభାଶఙమሻ Cosሺ𝜔ଵ𝑇ሻ𝑒ି்ሺଶఙభାଶఙమሻ Cosሺ𝜔ଶ𝑇ሻሻ 
(44)  

𝑎ସ = 𝑒ିଶ்ሺఙభାఙమሻ (45)  

The state space matrices in controllable canonical 
form can be determined from the transfer function 
[27]: 

A = 

െ𝑎ଵ െ𝑎ଶ െ𝑎ଷ െ𝑎ସ
1 0 0 0
0 1 0 0
0 0 1 0

 (46) 

G = ൦

1
0
0
0

൪ (47) 

C = ሾ𝑏ଵ 𝑏ଶ 𝑏ଷ 0ሿ (48) 

D = ሾ0ሿ (49) 

  

 5.2.3 Kalman Solution 

With the discrete state space plant defined in (46)-
(49), the Kalman solution depicted in Fig. 7, can be 
realized. Accordingly, the Kalman estimator 
equations, (27) - (30) are evaluated and then the 
normalized innovation is defined: 

Yn(n) = K 𝛾(n), (50) 

The gain K which normalizes the innovation to 
unity variance is known as normalization again. The 
normalization gain can be defined as the square root 
of the inverse power of the innovation window. If the 
normalized innovation sequence results from a 
significantly different system than the one considered, 
then the concentration of spectral energy around the 
mode of significant change will still demonstrate a 
strong threshold crossing. Kalman analysis operates, 
if the the power system model and noise data satisfy 
the drawbacks outlined in [10],[28],[29]. This means 
that the plant and noise data must satisfy conditions 
and relationships such as; detection of plant transfer 
function state space matrices, (51), measurement 
noise variance must be zero (52), left hand side of 
(53) must be non-zero and matrix defined by the left 

hand side of (54) must have no uncontrollable modes 
on the unit circle [10]. 

 ሺC, Aሻ, (51)  
𝑅 ഥ  0, (52)  
 𝑄ത െ 𝑁ഥ𝑅ିଵതതതതത െ 1𝑁ഥ𝑇  0, (53)  

ሺ𝐴 െ 𝑁ഥ𝑅ିଵതതതതത𝐶, 𝑄 െ 𝑁ഥ𝑅ିଵതതതതത 𝑁்ሻ (54)  

where ሾ21ሿ; 

𝑄ത ൌ 𝐺𝑄𝐺் (55) 

𝑅ത ൌ 𝑅  𝐷𝑁  𝑁்𝐷்  𝐷𝑄𝐷்,(56) 

𝑁ഥ ൌ 𝐺ሺ𝑄𝐷்  𝑁ሻ (57) 

  

5.2.4 Detection using the Innovation 

Under stationary operating conditions, the 
normalized innovation defined in (50) is white and 
Gaussian [10], with zero mean and unity variance 
thereby causing the power spectral density of the 
innovation to be flat. It is important to assume that the 
observation window has N samples and that the 
sampled PSD is found by taking the squared 
magnitude of the Discrete Fourier Transform (DFT) of, 
𝛾ሺ𝑛ሻ, i.e. 

𝛬 ሺ𝑘ሻ ൌ |𝜁ௗሼ𝛾ሺ𝑛ሻሽ|ଶ k=0, 1,.N-1, (58)  

Where 𝜁ௗ ሼ𝛾ሺ𝑛ሻሽ is the Discrete Fourier Transform 
(DFT). 

The samples of DFT of white noise are chi-squared 
with two degrees of freedom. It is equally known as 
exponential distribution [30],[31],[32] i.e.  

𝑓ሼ𝛬ሺ𝑘ሻሽ = N𝑒ି௸ሺሻே, (59) 

Where, 𝑓ሼ𝑥ሽ denotes the probability density 
function, x [10] 

At a theoretically determined confidence level 
found through the cumulative sum of the area under 
the probability density function (PDF) (59), a suitable 
threshold can be set within the PSD. A 99% 
confidence interval could be found by solving (60): 

 = 0.99 𝐹௸ ሼ𝛬ሽ𝑑𝛬
ூ

  (60)  

For stationary system, the normalized innovation 
PSD is expected to remain white. It resides and within 
the threshold set at a given level of confidence. As the 
system experiences a large detrimental deviation from 
the stationary system model as defined in (22)-(23), a 
spike may appear above the threshold in the 
innovation PSD. In practical application, if the 
damping is deteriorating, there would not be an 
automatic protection relay to trip a line. The response 
would be to ramp back generator settings or to trip an 
offending aspect of the plant provided it can be 
identified 

5.2.5 General Guide in tuning the Kalman Filter 

In practical scenario, Kalman filter requires 
adequate tuning to achieve the desired optimal 



Science and Technology Publishing (SCI & TECH) 
ISSN: 2632-1017 

Vol. 8 Issue 12, December - 2024 

www.scitechpub.org 
SCITECHP420335 1849 

estimation when dealing with real data applications. 
Usually, Q and R, values are known and can be easily 
tuned. Such prior knowledge of the error covariance 
matrices may not be available in real life scenario. 
Knowledge of the measurement transducer 
performance or measurement noise however, could 
be obtained through testing. Even so, a technique of 
tuning is still necessary to allow for changes over 
time. In addressing this issue, the selection of the 
error co-variance Q is particularly important, such that 
Q >> R [10][33][34]. This would ensure the adaptive 
capability of the Kalman filter. It is recognized that the 
measurement error covariance would be negligible; 
hence the determination of appropriate values in this 
analysis can be obtained empirically, by first setting Q 
to unity, and then adjusting R so that the pseudo-
stationary innovation result was close to white. Further 
techniques such as machine learning techniques for 
tuning the filter can be derived from [35][36][37].  

5.2.6 Conclusion on Kalman Filtering Approach 

The Kalman estimator is an optimal linear 
estimator which has proven to be effective for rapidly 
detecting modal changes in both simulated and real 
world power system scenarios. This detection strategy 
has demonstrated the capacity to identify the mode 
which has changed at a particular time and also 
rapidly detect large changes to power system modes. 
Multi-site measurements can be used to provide 
greater confidence in the detection alarming. This has 
significant implications for power utility intervention 
strategies. Clearly, this method is effective in terms of 
computing power and can effortlessly be implemented 
in real-time. 

6. SIGNIFICANCE AND LIMITATIONS OF EBD, 
OMID AND KID IN LARGE INTERCONNECTED 
POWER SYSTEMS 

When applied to real systems, the EBD is reliable 
and simple and can be easily tuned in the power 
system. While it provides a rapid indication of sudden 
detrimental change, it cannot tell precisely which 
mode the change is associated with. Therefore, it 
provides detection, but not identification. Though it is 
still attractive to multi-modal systems to provide short-
term monitoring, it is well suited for single mode power 
systems. The OIMD strategy which is suitable for use 
under certain conditions can equally be exploited for 
application in dominant mode, multi-modal systems. It 
can provide detection, but may be ambiguous in 
identification under undesirable conditions. But for the 
difficulty in tuning the Kalman filter adequately, the 
KID method has proven to be able to provide both 
detection and mode identification. Therefore, in 
practical scenario, this may not be an easy task which 
makes the more informative detector the most 
complicated to implement [10][38]. 

7. CONCLUSIONS AND FURTHER STUDIES 

This work has reviewed extensively, strategies 
deployed to assist power utilities to consistently and 
quickly monitor and confirm the modal condition within 

a large interconnected power system. Three modern 
methods of rapidly detecting deteriorating modal 
damping have been presented; the energy based 
method (EBD), optimal individual mode detector 
(OIMD) and Kalman innovation method (KID). EBD is 
excellent for monitoring the system output as a whole 
and would be particularly suitable for single mode 
systems. But OIMD and KID are designed to provide 
both alarming of sudden negative damping and the 
identification of the offending mode. These strategies 
deploy analytical means to characterize the expected 
system measurement and determine the desired 
threshold. This work provides a comprehensive review 
of existing modal estimation methods and proposes a 
new framework for rapid detection of deteriorating 
modal damping. 

Future studies should aim to demonstrate the 
adequacy of the methods by way of simulations, 
verification and real data analysis from the Nigerian 
interconnected power system. Such studies should 
also provide close to expected false alarms under 
adequately damped quasi-stationary conditions of the 
power system. Also, exploring the application of 
machine learning techniques for modal estimation or 
investigating the impact of renewable energy sources 
on power system stability are critical areas for future 
research. 
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