Design And Evaluation Of Standalone Solar Power System For Autocad Laboratory At University Of UYO

Aniekan Offiong¹ Department of Mechanical and Aerospace Engineering, University of Uyo, Akwa Ibom State , Nigeria **Constance Kalu²** Department of Computer Engineering University of Uyo, Akwa Ibom State , Nigeria

Abstract— In this work, standalone solar power system design and evaluation for AUTOCAD Laboratory at University of Uyo is presented. The system design and evaluation was power conducted using PVSyst software. The AUTOCAD Laboratory site has geographical coordinates of 5.041322, 7.974553 with 4.7 kWh/m^2 as the annual mean global solar radiation and annual mean of daily temperature of 24.9 °C. The laboratory has daily energy demand of 121.640 kWh/day. The simulation results showed that the system had annual mean solar fraction of 0.997 which is equivalent to annual mean loss of load of 0.3 %. All the power outage occurred in the month of July alone, with missing energy of about 144.2 kWh, loss of load duration of 40 hours and 5.2 % loss of load probability. Also, the unused energy is 13.4 %, PV array loss is 16.2%, the battery charging loss is 5.5 % while the energy supplied to the user is 64.8 %. Notably, the results presented in this work will assist in the energy management and planning, especially in making arrangement for alternative power in those days with high probability of power outage.

Keywords — Standalone Power System, Energy Demand Profile, Renewable Energy, Solar Power System, PVYsts Software

1. INTRODUCTION

In recent years, in addition to the traditional manual pencil and drawing board approach, students in many Nigerian universities have learnt to draw with AUTOCAD software [1,2]. This enables them to quire design skills that are in high demand in many engineering profession and industries. As such, nowadays, many institutions have setup computer-based drawing studio equipped with computer systems, projectors, and other Franklin Ugochukwu² Department of Computer Engineering, University of Uyo, Akwa Ibom State , Nigeria

amenities that make it conducive for learning [3,4]. However, the major challenge to such setup is lack of effective power supply [5].

Notably, Nigeria is faced with perennial power problem with epileptic power supply that rarely serve the purpose [6,7]. Accordingly, alternative energy supply is required to maximize the use of such AUTOCAD laboratory setup in the universities. Therefore, in this paper, solar power system is presented for powering the AUTOCAD laboratory in the faculty of engineering university of Uyo.

Specifically, the solar power is designed to be stand alone and the focus is to use PVSyst software to design and evaluate the solar power system performance with major emphasis on the power outage or loss of load probability [8,9]. The system design is based on the daily load demand of the AUTOCAD laboratory and the meteorological data of the site. In all, the ideas presented in this work is expected to assist in the planning, design and implementation of solar power solution for the case study AUTOCAD laboratory and also for power supply to similar facilities.

2. METHODOLOGY

2.1 Description of the AUTOCAD laboratory location and meteorological dataset

The AUTOCAD laboratory is located in the building housing drawing studio at the Faculty of Engineering University of Uyo which has the geographical coordinates of 5.041322, 7.974553. The Google map visualization of the site is given in the screenshot shown in Figure 1 while the solar paths chart for the AUTOCAB laboratory at engineering drawing studio UNIUYO is shown in Figure 2.

Figure 1 The Google map visualization of the AUTOCAD laboratory located in the building housing drawing studio at the Faculty of Engineering University of Uyo

Figure 2 The solar paths for the AUTOCAB laboratory at Engineering drawing studio UNIUYO

The monthly mean values of the meteorological parameters for the AUTOCAB laboratory site at UNIUYO is given in Table 1 which shows 4.7 kWh/m² as the annual mean global solar radiation on the horizontal plane for the site.

Again, the mean daily atmospheric temperature for the AUTOCAB laboratory at Engineering drawing studio UNIUYO is shown in Figure 3 which showed annual mean of daily temperature of the site as 24.9 °C.

 Table 1 The monthly mean values of the meteorological parameters for the AUTOCAB laboratory at Engineering drawing studio UNIUYO

	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sep.	Oct.	Nov.	Dec.	Year	
Hor. global	5.53	5.59	5.32	5.09	4.72	4.31	3.85	3.77	3.94	4.27	4.84	5.29	4.70	kWh/m ² .da
Hor. diffuse	1.73	1.97	2.22	2.27	2.18	2.11	2.13	2.20	2.27	2.17	1.95	1.71	2.08	kWh/m2.da
Extraterrestrial	10.08	10.42	10.52	10.20	9.66	9.30	9.40	9.88	10.32	10.40	10.14	9.92	10.02	kWh/m².da
Clearness Index	0.549	0.536	0.506	0.499	0.488	0.463	0.410	0.382	0.382	0.411	0.477	0.533	0.470	
Amb. temper.	25.4	25.8	25.7	25.8	25.6	24.8	24.1	23.9	24.1	24.4	24.7	24.7	24.9	°C

Figure 3 The mean daily atmospheric temperature for the AUTOCAB laboratory at Engineering drawing studio UNIUYO

The load profile of the AUTOCAB laboratory at Engineering drawing studio UNIUYO is given in Table 2. According to Table 2, the laboratory has about 12.22 kW of power demand which gives daily energy demand of 121.640 kWh/day when the laboratory operates for about 10 hours per day. The PVSyst simulation model of the energy demand is captured in the screenshot of Figure 4

which approximated the daily energy demand to 122 kWh/day.

The schematic diagram of typical standalone solar power system is shown in Figure 5. However, unlike the PVSyst typical solar power system model shown in Figure 5, in this study, the solar power system designed has no backup power generator. As such, the analysis will examine the possible incidences of power outages in the system.

S/N	Load Item	Rated Power (W)	Quantity	Hours of operation per day	Power demand (W)	Energy Demand (wh/day)
1	Computer Systems with AUTOCAD software	120	50	10	6000	60000
2	Printers	80	1	3	80	240
3	Air Conditioner	1205	4	10	4820	48200
4	Fan	60	10	10	600	6000
5	Light	30	20	10	600	6000
6	Projector	120	1	10	120	1200
	TOTAL				12,220.00	121,640.00

Table 2 The load profile of the AUTOCAB laboratory at Engineering drawing studio UNIUYO

Fgure 4 The screenshot of the PVSyst simulation model of the energy demand of the AUTOCAB laboratory at Engineering drawing studio UNIUYO

Figure 5 The schematic diagram of typical standalone solar power system

The PVSyst solar system components sizing tool was used to select and determine the battery capacity and solar panel array capacity and the charger controller. The details of the characteristics of the selected PV panel shown in Figure 6 while the details of the characteristics of the selected battery and the graphical plot of the battery are shown in Figure 7 while the graph of battery voltage versus charging time is shown in Figure 8. The selected solar module panel is a 150 Wp rated Polycrystalline silicon PV panel with module area conversion efficiency of 9.4 %.

Also, the selected battery is a 12 V 100 Ah lead-acid sealed Gel battery with 97 % efficiency.

The general characteristics of the selected universal charger controller with Maximum Power Point Tracking (MPPT) technology are given in Figure 9 while the efficiency profile of the charger controller is given in Figure 10. It showed that the selected charger controller has maximum efficiency of about 97 %. Based on the selected components and with 5 % maximum allowable loss of load and 3 days of power autonomy settings, the PVSyst software was then used to simulate the solar power system for the energy yield and the attendant losses and system performance evaluation.

Characteristics of a PV moduleManufacturer, model :Canadian Solar Inc., CS6P - 150Availability :Prod. from 2009 to 2009Data source :Photon Mag. 2009STC power (manufacturer)Pnom150 WpTechnologyModule size (W x L) $0.982 \times 1.638 m^2$ Rough module areaNumber of cells 1×60 Sensitive area (cells)Specifications for the model (manufacturer or measurement data)Reference temperatureTRef25 °CReierence irradianceOpen circuit voltageVoc $35.6 V$ Short-circuit currentMax. power point voltageVmpp $28.6 V$ Max. power point current=> maximum powerPmpp $150.2 W$ Isc temperature coefficient	Si-p Amodule Acells GRef	boly 1.61 m² NA m²
Manufacturer, model : Canadian Solar Inc., CS6P - 150 Availability : Prod. from 2009 to 2009 Data source : Photon Mag. 2009 STC power (manufacturer) Pnom 150 Wp Technology Module size (W x L) 0.982 x 1.638 m² Rough module area Auge and auge	Si-r Amodule Acells GRef	ooly 1.61 m² N/A m²
Availability : Prod. from 2009 to 2009 Data source : Photon Mag. 2009 STC power (manufacturer) Pnom 150 Wp Technology Module size (W x L) $0.982 \times 1.638 m^2$ Rough module area Number of cells 1 x 60 Sensitive area (cells) Specifications for the model (manufacturer or measurement data) Reference temperature TRef 25 °C Reference irradiance Open circuit voltage Voc 35.6 V Short-circuit current Max. power point voltage Vmpp 28.6 V Max. power point current => maximum power Pmpp 150.2 W Isc temperature coefficient	Si-r Amodule Acells GRef	boly 1.61 m² N/A m²
Data source : Photon Mag. 2009 STC power (manufacturer) Pnom 150 Wp Technology Module size (W x L) $0.982 \times 1.638 m^2$ Rough module area Number of cells Number of cells 1×60 Sensitive area (cells) Specifications for the model (manufacturer or measurement data) Reference temperature TRef $25 \ ^{\circ}$ C Reierence irradiance Open circuit voltage Voc $35.6 \ V$ Short-circuit current Max. power point voltage Vmpp $28.6 \ V$ Max. power point current => maximum power Pmpp $150.2 \ W$ Isc temperature coefficient	Si- ; Amodule Acells GRef	ooly 1.61 m² N/A m²
STC power (manufacturer) Pnom 150 Wp Technology Module size (W x L) 0.982 x 1.638 m² Rough module area Number of cells Number of cells 1 x 60 Sensitive area (cells) Specifications for the model (manufacturer or measurement data) Reference temperature TRef 25 °C Reierence irradiance Open circuit voltage Voc 35.6 V Short-circuit current Max. power point voltage Vmpp 28.6 V Max. power point current => maximum power Pmpp 150.2 W Isc temperature coefficient	Si-r Amodule Acells GRef	00ly 1.61 m² N/A m²
Module size (W x L) $0.982 \times 1.638 \text{ m}^2$ Rough module areaNumber of cells 1×60 Sensitive area (cells)Specifications for the model (manufacturer or measurement data)Reference temperatureTRef25 °CReierence irradianceOpen circuit voltageVoc35.6 VShort-circuit currentMax. power point voltageVmpp28.6 VMax. power point current=> maximum powerPmpp150.2 WIsc temperature coefficient	Amodule Acells GRef	1.61 m² N/A m²
Number of cells 1 x 60 Sensitive area (cells) Specifications for the model (manufacturer or measurement data) Reference temperature TRef 25 °C Reference irradiance Open circuit voltage Voc 35.6 V Short-circuit current Max. power point voltage Vmpp 28.6 V Max. power point current => maximum power Pmpp 150.2 W Isc temperature coefficient	Acells GRef	N/A m ²
Specifications for the model (manufacturer or measurement data) Reference temperature TRef 25 °C Reference irradiance Open circuit voltage Voc 35.6 V Short-circuit current Max. power point voltage Vmpp 28.6 V Max. power point current => maximum power Pmpp 150.2 W Isc temperature coefficient	GRef	
Reference temperature TRef 25 °C Reference irradiance Open circuit voltage Voc 35.6 V Short-circuit current Max. power point voltage Vmpp 28.6 V Max. power point current => maximum power Pmpp 150.2 W Isc temperature coefficient	GRef	
Open circuit voltage Voc 35.6 V Short-circuit current Max. power point voltage Vmpp 28.6 V Max. power point current => maximum power Pmpp 150.2 W Isc temperature coefficient	0,.0,	$1000 W/m^2$
Max. power point voltage Vmpp 28.6 V Max. power point current => maximum power Pmpp 150.2 W Isc temperature coefficient	Isc	590 A
=> maximum power Pmpp 150.2 W Isc temperature coefficient	Imnn	5.25 A
	mulsc	3.5 mA/°C
One-diode model parameters	1-Def	1 00 - 1
Sound resistance Risound 220 ohm Diode saturation current	IoRef	1.22 NA
Serie resistance Rserie 0.60 onm Voc temp. coefficient	MUVOC	-127 mv/°C
Specified Pmax temper coeff muPMaxR -0.45 %/°C Diode factor temper coeff muPMaxR -0.45 %/°C Diode factor temper coeff mu	Gamma	1.04 0.000_1/°C
	Canina	0.000 // 0
Reverse Bias Parameters, for use in behaviour of PV arrays under partial shadings or mi	smatch	
Reverse characteristics (dark) BRev 3.20 mA/V ² (quadratic factor (per cell))		
Number of by-pass dicdes per module 2 Direct voltage of by-pass dicdes		-0.7 V
Model results for standard conditions(STC: T=25°C, G=1000 W/m², AM=1.5)Max. power point voltageVmpp27.8 VMax. power point currentMaximum powerPmpp151.1 WcPower temper. coefficientEfficiency(/ Module area)Eff_mod9.4 %Fill factorEfficiency(/ Cells area)Eff_cellsN/A %	Impp muPmpp FF	5.44 A -0.44 %/°C 0.719
PV module: Canadian Solar Inc., CS6P - 150		
7 <mark> • • • • • • • • • • • • • • • • • • •</mark>	- ¬	
Cells temp. = 25 °C	-	
6 – Incident Irrad. = 1000 W/m²	-	
151.1 W	-	
5-	_	
Incident Irrad. = 800 W/m² 121.6 W		
A	1	
≤ ⁴	1	
91.2 W	-	
³ 3-	-	
Incident land = 101 Wim?		
60.3 W	1	
2-	-	
Incident Irrad. = 200 W/m ²	1	
1	-	
	1	
	40	
Voltage [V]		

Figure 6 The details of the general characteristics of the selected PV panel

Figure 8 The battery voltage versus charging time

PVSYST V6.87			Page 1/1
Characteristic	s of a controller for	stand-alone	
Manufacturer, model : Generic, Ur Data source : Adaptable for an	niversal controller with M	PPT converter	
General features			
Technology / Data display capability Nominal battery voltage Maximum Input Current Maximum output current Current self-consumption Battery temperature compensation Associated Battery Pack technology	MPPT converter I FV Max I load max Night / Running Internal sensor Lead-acid, sealed, Gel	No display 96 V 456 A 127 A 0 mA / 0	0 mA
Running Thresholds			
Charging thresholds (PV charging) (overcharging protection) Load Disconnecting threshold (deep discharge protection)	Triggering OFF (Vmax) Triggering ON Triggering OFF (Vmin) Triggering ON	per cell whole bat 2.22 V 106.6 2.11 V 101.4 1.97 V 94.5 2.05 V 98.3	ttery 5 V 5 V 5 V 8 V
Corrections according to battery temperature Reference temperature	ef T	-5.0 mV/°C -240.0 25 °C	0 mV/°C
Remarks and Technical features			
General purpose generic regulator with MPPT c Thresholds adjusted according to the associat No limits on charge/discharge currents	onverter ed battery Pac		

Figure 9 The details of the general characteristics of the selected charger controller

3. RESULTS AND DISCUSSION

The results of the PVSyst simulation are presented; first, the energy balance results are presented in Table 3 which show that the system had annual mean solar fraction of 0.997. This means that the solar power system was able to supply the desired load demand about 99.7 % of the time in a year. Hence, only in about 0.3 % of the total time in a year. Specifically, according to the results in Table 3, this power outage occurred in the month of July alone, with missing energy of about 144.2 kWh. As shown in Table 4, the July power outage resulted in loss of load duration of 40 hours in July with the resultant 5.2 % loss of load probability in that month. However, the annual loss of load is 0.3 % which is very good with respect to the

maximum allowable annual loss of load of 5 $\%\,$ stated in the design specification.

The graph of loss of load duration for the months of June, July and August is presented n Figure 11 while the graph of the daily loss of load duration for the months July is presented in Figure 12. According to the loss of duration plots, the loss of load in the month of July is expected on the 21st, 22nd, 23rd and 24th day in July. This information is essential for the planning of load shading, load scheduling and for making arrangement for alternative power supply for the AUTOCAD laboratory.

	GlobHor	GlobEff	E_Avail	EUnused	E_Miss	E_User	E_Load	SolFrac
	kWh/m²	kWh/m²	kWh	kWh	kWh	kWh	kWh	
January	171.4	166.0	5479	1346	0.0	3771	3771	1.000
February	156.5	151.8	5013	1444	0.0	3406	3406	1.000
March	164.9	160.0	5252	1353	0.0	3771	3771	1.000
April	152.7	148.1	4873	1079	0.0	3649	3649	1.000
May	146.3	141.1	4676	783	0.0	3771	3771	1.000
June	129.3	124.9	4182	439	0.0	3649	3649	1.000
July	119.4	114.5	3855	150	144.2	3627	3771	0.962
August	116.9	112.4	3771	247	0.0	3771	3771	1.000
September	118.2	113.8	3753	0	0.0	3649	3649	1.000
October	132.4	127.7	4227	153	0.0	3771	3771	1.000
November	145.2	140.6	4655	785	0.0	3649	3649	1.000
December	164.0	159.5	5317	1373	0.0	3771	3771	1.000
Year	1717.2	1660.4	55053	9152	144.2	44254	44399	0.997

Table 3 The PVSyst energy balance results of the simulated solar power system

	E_Miss	T_LOL	Pr_LOL
	kWh	Hour	%
January	0.0	0	0.00
February	0.0	0	0.00
March	0.0	0	0.00
April	0.0	0	0.00
Мау	0.0	0	0.00
June	0.0	0	0.00
July	144.2	40	5.32
August	0.0	0	0.00
September	0.0	0	0.00
October	0.0	0	0.00
November	0.0	0	0.00
December	0.0	0	0.00
Year	144.2	40	0.45

Table 4 The results for the loss of load duration and the loss of load probability

The results of the system components configuration parameters are shown in Figure 13. Accordingly, there is a total of 480 batteries and a total of 265 PV models that occupy a total area of 426 m².

The results of the normalized energy per installed kWp are presented in Figure 14. The normalized energy per installed kWp by the battery is 0.63 kWh/kWp/day, normalized energy supplied to the user is 2.05

kWh/kWp/day, the normalized energy lost in the PV array is 0.76kWh/kWp/day while normalized energy lost due to battery charging efficient is 0.26 kWh/kWp/day.

The results of the normalized energy production and loss factor are presented in Figure 15. According to the results in Figure 15, the unused energy is 13.4 %, PV array loss is 16.2%, the battery charging loss is 5.5 % while the energy supplied to the user is 64.8 %.

PVSYST V6.87												18/	01/25	Pag	je 1/6
	5	Stand	l alor	ne sy	/sten	n: S	Sim	ulat	ion p	aran	neter	S			
Project :	4	AUTO	CADL	AB SC	DLAR	PO	WER								
Geographi M adc Bate io	al Eng	ineerir	g Worl	kshop	UNIUY	0					Cou	intry I	Nigeria		
Situation					Latitud	de	0.00°	Ν			Longit	tude (0.00° E		
l ime defined as				Le	agai Tin Albeo	ne do	1 ime 0.20	zone	e U1		Altit	uae (0 m		
Meteo dataMechanic	al Eng	ineerir	g Worl	kshop	UNIUY	0	NASA	4-SS	E satel	lite data	1983-	2005 -	Synthe	tic	
Simulation variant	ti N	New s	mulat	ion va	riant										
				Simula	tion da	te	18/01	/25 (01h05						
Simulation parame	ters			Sys	stem typ	pe	Stan	d alo	ne sys	stem w	ith bat	teries			
Collector Plane Ori	entatio	n			7	Filt	5°				Azin	nuth (0°		
Models used				Tran	spositio	on	Perez	z			Diff	fuse l	Perez, I	Aeteon	orm
User's needs :				da	ily profi avera	ïle ae	Cons	tant o (Wh/l	over the Dav	e year					
	0 h	1 h	2 h	3 h	4h	5 h	6	h	7 h	8 h	9 h	10 h	11 h		1
	12 h	13 h	14 h	15 h	16 h	1	7 h	18 h	19 h	20 h	21 h	22 h	23 h		
Hourly load	0.00	0.00	0.00	0.00	0.00	0.00	0 0.	00 0.00	0.00	12.16 0.00	12.16	12.16	12.16	kW kW	
						1				0.00		1 0.00			1
	-			-		_	_	_	-				-	_	_
PV module Original PVsyst dat Number of PV module Total number of PV m Array global power Array operating chara Total area	abase es nodules acteristic	cs (50°	Si-po	Man Nb. Nomir Moc	Mod ufactur In serie module nal (STe U mp dule are	del er es es C) pp ea	CS6P Canad 5 mod 265 39.8 123 V 426 r	dian s dules kWp n ²	5 0 Solar Ir	unit N Unit N At opera	In para om. Po ating co I r	allel 5 wer 1 ond. 3 mpp 2	53 string 150 Wp 35.5 kW 289 A	gs p (50°C	C)
System Parameter				Sys	tem typ	pe	Stan	d alo	one sys	stem					
Battery					Mod	lel	Acme	G 12	2V 100	F					
Battery Pack Characte	eristics			Man Nt	ufactur b. of uni	er its	Narac 8 in s	1a eries	x 60 ir	parale	el				
				Voltage			96 V Nominal Ca				al Capa	acity (5000 Ah		
			Discha	arging Terr	mn. SC iperatu	re	Z0.0 Fixed	% (20°	C)	Stol	red ene	ergy 4	ŧ/5.0 κ\	vn	
Controller					Mod	lel	Unive	ersal	controll	er with	MPPT	convert	ter		
Converter		Max	i and E	Te URO ef	chnolog ficienci	gy es	MPPT 97.0	conv 95.0	verter) %	Т	emp co	oeff	•5.0 mV	/°C/ele	m.
Battery Management	control	I	hreshol	d comr Dis	mands a Chargin schargin	as ng ng	SOC = SOC = SOC =	calcul = 0.9 = 0.2	lation 0 / 0.7 0 / 0.4	5 i 5 i	.e. app .e. app	rox. 1 rox. 9	106.8 / 94.5 / 9	101.4 V 8.3 V	1
DV Array loss fact	are.	5													
Thermal Loss factor	15				lc (cons	st)	20.0	W/m	²K		Uv (w	ind)	0.0 W/m	1 ² K / m	/s
Wiring Ohmic Loss			0	Global a	array re	es.	7.2 m	Ohm		Lo	ss Frac	tion	1.5 % a	t STC	, -
Serie Diode Loss				Volt	age Dro	ор	0.7 V			Lo	ss Frac	tion (0.5 % a	t STC	
Module Quality Loss Module Mismatch Los	ses									Lo	ss Frac ss Frac	tion - tion -	∙0.8 % 1.0 % ai	t MPP	
Strings Mismatch loss										Lo	ss Frac	tion (0.10 %		

Figure 13 The results of the system components configuration parameters

Normalized Production and Loss Factors: Nominal power 39.8 kWp

Figure 15 The results of the normalized energy production and loss factor

4. CONCLUSION

In this study, the design and performance analysis of solar energy system for powering an AUTOCAD laboratory is presented. The PVSyst software was used to determine the solar power system's components sizes as well as the determination of the energy yield, energy supplied and energy losses. Specifically the loss of load was determined along with the loss of load duration, and the specific days in the year the loss of load occurred. Notably, the results presented in this work will assist in the energy management and planning, especially in making arrangement for alternative power in those days with high probability of power outage.

References

- 1. DANLADI, I. S. (2023). THE USE OF COMPUTER SOFTWARE IN TEACHING TECHNOLOGY MODULE IN ARCHITECTURE SCHOOLS (Doctoral dissertation, UNIVERSITY OF JOS).
- Ikubanni, P. P., Adeleke, A. A., Agboola, O. O., Christopher, C. T., Ademola, B. S., Okonkwo, J., ... & Akinlabi, E. T. (2022). Present and Future Impacts of Computer-Aided Design/Computer-

Aided Manufacturing (CAD/CAM). Journal Européen des Systèmes Automatisés, 55(3).

- 3. OLAMIGOKE, G. O. (2021). EFFECTS OF COMPUTER GRAPHICS AND ANIMATION INSTRUCTIONAL MODES ON JUNIOR SECONDARY STUDENTS'ACADEMIC ACHIEVEMENT AND SKILLACQUISITION IN BUSINESS STUDIES IN IBADAN, NIGERIA (Doctoral dissertation).
- 4. Abegunasekara, N. S., & Gopal, U. B. (2023). RECENT TRENDS AND TEACHING METHODS OF ANATOMY.
- Olukan, T. A., Santos, S., Al Ghaferi, A. A., & Chiesa, M. (2022). Development of a solar nanogrid for meeting the electricity supply shortage in developing countries (Nigeria as a case study). *Renewable Energy*, 181, 640-652.
- IKENGA, F. A., & OGIDIGBEN, E. A. (2024). Electricity Supply and Management Challenges in Nigeria: A Study of BEDC. *Jurnal Transparansi Publik (JTP)*, 3(2), 43-52.

- Jonah, K. (2023). Evaluating the Landscape of Electricity Regulation in Nigeria: An In-Depth Analysis of the Electricity Act 2023 and Its Pivotal Reforms in the Power Sector. Available at SSRN 4613516.
- Shukla, A. K., Sudhakar, K., & Baredar, P. (2016). Design, simulation and economic analysis of standalone roof top solar PV system in India. *Solar Energy*, 136, 437-449.
- Makinde, K. A., Adewuyi, O. B., Amole, A. O., & Adeaga, O. A. (2021). Design of grid-connected and stand-alone photovoltaic systems for residential energy usage: a technical analysis. *Journal of Energy Research and Reviews*, 8(1), 34-50.