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Abstract In this study, Long-term load 
forecasting in Uyo metropolis using Long Short-
Term Memory (LSTM) model is presented. The 
parameters used for the model training are 24 
years’ daily time series data on temperature, 
rainfall and wind speed, population, gross 
domestic product and the daily Electric Peak load 
demand. The dataset was normalized and split 
into 70 % training set, 15 % validation set and 15 
% testing set. SHAP technique was applied on the 
LSTM model to determine the influence of each 
input variables on the forecasted load demand 
results. The results show that in the baseline 
case, the LSTM model had MSE of 0.12726, RMSE 
of 0.356735, MAE of 0.292638 and R^2 of 0.982059. 
Also, the results show that the daily peak load 
increased from 51.5 MW in 2024 to in 61.2 MW in 
2028. In all, the feature selection using the SHAP 
technique did not yield any significant 
improvement in the prediction performance of the 
LSTM model. 

Keywords— Long-term Load Forecasting, Long 
Short-Term Memory (LSTM), Electric Peak Load 
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1. Introduction 

In the power industry, energy demand forecasting 
is essential for power system planning [1,2,3]. Power 
system planning can be for the installation of new 
equipment or power network [4,5]. The planning can also 
be for upgrading or expansion of existing power system 
[6,7]. In another scenario, power system planning can entail 
electrical load management which may involve load 
shedding, energy cost management, among other options 
[8,9]. Each of these power system planning options require 
adequate knowledge of the prevailing energy consumption 
pattern and possibly the future energy demand 10,11,12]. 
Such energy demand pattern can be modelled using 
analytical or machine learning model.  

In order to use the analytical or machine learning 
model for electric energy demand pattern and then to 
forecast future energy demand, some time series data values 
are needed , especially the time series energy demand data  
along with some weather and economic parameters that 
correlate well with energy demand of the case study area 
[13,14,15]. In this work, Long Short-Term Memory 
(LSTM) algorithm is used to model the electric energy 
demand in Uyo [16,17,18]. The LSTM model utilized three 
weather parameters, two economic parameters and time 
series daily load demand to depict the load demand of Uyo 
city and then use the model to forecast the energy demand 
for about ten years ahead. The study is essential for power 
system planning for the city of Uyo.  
2.0  Description of the Long Short-Term Memory 
(LSTM) Model 

The Long Short-Term Memory (LSTM) model 
architecture is presented in Figure 1. The LSTM 
architecture involved the memory cell which is controlled 
by the input gate, the forget gate, and the output gate. The 
input gate chooses which data is passed to the memory cell 
[19,20,21]. The forget gate chooses what data to remove 
from the memory cell while the output gate chooses what 
part of the information to output. This structure allows 
LSTM models to retain important data or delete 
insignificant data as it is passed through the model. In the 
LSTM architecture shown in Figure 1 Xt represents input 
time step, ht represents output, Ct represents cell state, ft 
represents forget gate, it represents input gate and Ot 
represents output gate.  

The internal working of the forget gate is 
expressed in Equation 1 where, Wf  represents forget gate 
weight matrix, ht-1, and  xt are chain of present input and the 
preceding concealed state, bf represents bias related to 
forget gate and σ is the sigmoid activation function. The 
forget gate function as a filter and allows data near one to 
pass while rejecting information with values near zero. By 
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model performance was validated using the validation 
dataset.  

After the training and validation, the model was 
used to forecast the daily peak load demand. Also, SHAP 
technique was applied on the LSTM model to determine 
the influence of each input variables on the forecasted load 
demand results. 

Table 1: Summary of LSTM model 
Layer(type) Output shape Param 

Lstm_2(LSTM) (None, 6, 64) 18176 

Lstm_3 (LSTM) (None, 64) 33024 

Dense_1 (Dense) (None, 1) 65 

Total params  51,265 

Trainable params  51,265 

Non-trainable params  0 

 
 
 
 
 
 
 
 
 

Table 2: Hyperparameters of LSTM 
Model Tuning 

Parameters Values 

Number of Layers 4 

Number of Neurons 36 

Activation Function ReLU 

Learning Rate 0.001 

Batch Size 1 

Number of Epochs 200 

 
4. Results and Discussion 

4.1 Model-Specific Feature Impacts 

 The results in Figures 2 and Figures 3 show the 
impact of each of the variables on the performance of the 
LSTM model. The input features used are represented by 
the vertical axis while the impact of the variables is shown 
on the horizontal axis. Specifically, Figure 3 shows the 
feature importance based on SHAP values for the LSTM 
model. The performance of the LSTM model in the base 
case without the feature selection study using the SHAP 
value is shown in Figure 4. It shows that in the baseline 
case, the LSTM model had MSE of 0.12726, RMSE of 
0.356735, MAE of 0.292638 and R^2 of 0.982059. 
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Figure 5 The line chart of the performance of the LSTM model when using different features selected using the SHAP 

value 
4.2 Forecasting future peak load demand 

The results in Figure 8 show the annual peak load 
demand in MW using baseline models and using the LSTM 
after the feature selection with the SHAP values. 
Furthermore, the load forecasting result using LSTM after 
feature selection is shown in Figure 7 for the training and 

the validation dataset. The plot of yearly peak load forecast 
with LSTM after feature selection is shown in Figure 8. The 
results show that the daily peak load increased from 51.5 
MW in 2024 to in 61.2 MW in 2028. 

 

 
Figure 6 The annual peak load demand in MW using the baseline model and using the LSTM after the feature selection with 

the SHAP values. 
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